Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69497
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張?仁
dc.contributor.authorYen-An Chenen
dc.contributor.author陳彥安zh_TW
dc.date.accessioned2021-06-17T03:17:23Z-
dc.date.available2018-07-06
dc.date.copyright2018-07-06
dc.date.issued2018
dc.date.submitted2018-07-03
dc.identifier.citation1. Cheadle C, Fan J, Cho-Chung YS, et al. (2005) Stability regulation of mRNA and the control of gene expression. Annals of the New York Academy Sciences 1058:196-204.
2. Agnès Desroches-Castan, Jean-Jacques Feige, Nadia Cherradi. (2017) ACTH Action on Messenger RNA Stability Mechanisms. Front Endocrinol (Lausanne) PMCID: PMC5247459
3. Ciais D, Cherradi N, Feige JJ. (2013) Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cellular and Molecular Life Sciences 70(12):2031-2044
4. Hitti E, Khabar KS. (2012) Sequence variations affecting AU-rich element function and disease. Front Biosci (Landmark Ed) 17:1846–1860.
5. Bérengère de Toeuf, Romuald Soin, et al (2018) ARE-mediated decay controls gene expression and cellular metabolism upon oxygen variations. Scientific reports 8(1):5211
6. Brooks, S. A. & Blackshear, P. J. (2013) Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta. 1829, 666–679.
7. White, E. J. F., Brewer, G. & Wilson, G. M. (2013) Post-transcriptional control of gene expression by AUF1: Mechanisms, physiological targets, and regulation. Biochim Biophys Acta 1829, 680–688.
8. Simone, L. E. & Keene, J. D. Mechanisms (2013) Coordinating ELAV/Hu mRNA Regulons. Curr Opin Genet Dev. 23, 35–43.
9. Pullmann R Jr1, Rabb H. (2014) HuR and other turnover- and translation-regulatory RNA-binding proteins: implications for the kidney. American journal of physiology 306(6):F569-576
10. Caput, D. et al. (1986) Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators. Proceedings of the National Academy of Sciences of the United States of America 83, 1670-1674.
11. Shaw, G. & Kamen, R. (1986) A conserved AU sequence from the 3’untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659-667.
12. Kruys, V., Marinx, O., Shaw, G., Deschamps, J. & Huez, G. (1989) Translational blockade imposed by cytokine-derived UA-rich sequences. Science 245, 852–855.
13. Sandhya Sanduja, Fernando F. Blanco, Dan A. Dixon. (2010) The roles of TTP and BRF proteins in regulated mRNA decay Wiley Interdisciplinary Reviews: RNA 2:42-57
14. Blackshear PJ. (2002) Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans. 30:945–952
15. Stumpo DJ., et al. (2016) Deficiency of the placenta- and yolk sac-specific tristetraprolin family member ZFP36L3 identifies likely mRNA targets and an unexpected link to placental iron metabolism. Development. 143(8):1424-1433.
16. Lai WS, Blackshear PJ. (2001) Interactions of CCCH zinc finger proteins with mRNA: tristetraprolin-mediated AU-rich element-dependent mRNA degradation can occur in the absence of a poly(A) tail. J. Biol. Chem. 276:23144–23154
17. Baou M, Jewell A, Murphy JJ. (2009) TIS11 family proteins and their roles in posttranscriptional gene regulation. J. Biomed. Biotechnol. 2009:634520.
18. Blackshear PJ, Perera L. (2014) Phylogenetic distribution and evolution of the linked RNA-binding and NOT1-binding domains in the tristetraprolin family of tandem CCCH zinc finger proteins. J Interferon Cytokine Res. 34(4):297-306.
19. Shyu AB, Belasco JG, Greenberg ME. (1991) Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5(2):221-231.
20. Lai WS, Kennington EA, Blackshear PJ. (2003) Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol. 23(11):3798-3812.
21. Heike Sandler, Jochen Kreth, H. Th. Marc Timmers, and Georg Stoecklin (2011) Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res. 39(10): 4373–4386.
22. Doidge R, Mittal S, Aslam A, Winkler GS. (2012) Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex. Biochem Soc Trans. 40(4):896-901
23. Wahle E, Winkler GS. (2013) RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta. 1829(6-7):561-70
24. Collart MA1, Panasenko OO. (2012) The Ccr4--not complex. Gene. 492(1):42-53.
25. Hau HH, et al. (2007) Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. J Cell Biochem. 100(6):1477-1492
26. Devi Mukherjee, et al. (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 21(1-2): 165–174.
27. Fenger-Gron M, et al. (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell. 22;20(6):905-915.
28. Baou M, Jewell A, Murphy JJ. (2009) TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol. p.634520.
29. G. A. Taylor, M. J. Thompson, W. S. Lai, and P. J. Blackshear. (1995) Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. The Journal of Biological Chemistry, no. 22, p. 13341–13347
30. W. Zhu, M. A. Brauchle, F. Di Padova et al. (2001) Gene suppression by tristetraprolin and release by the p38 pathway. American Journal of Physiology, no. 2, p. L499–L508
31. C. A. Chrestensen, M. J. Schroeder, J. Shabanowitz et al. (2004) MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. The Journal of Biological Chemistry. no. 11, p. 10176–10184
32. H. Cao, L. J. Deterding, J. D. Venable et al. (2006) Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis. Biochemical Journal, vol. 394, no. 1, p. 285–297
33. S. Maitra, C.-F. Chou, C. A. Luber, K.-Y. Lee, M. Mann, and C.-Y. Chen. (2008) The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. RNA, no. 5, p. 950–959.
34. E. Hitti, T. Iakovleva, M. Brook et al. (2006) Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Molecular and Cellular Biology no. 6, p. 2399–2407.
35. B. A. Johnson, J. R. Stehn, M. B. Yaffe, and T. K. Blackwell. (2002) Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent and -independent mechanisms. The Journal of Biological Chemistry, no. 20, p. 18029–18036.
36. L. Sun, G. Stoecklin, S. Van Way et al. (2007) Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-α mRNA. The Journal of Biological Chemistry. no. 6, p. 3766–3777.
37. Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JL. (2010) MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem. 285(36):27590-27600
38. Ya-Han Yu. (2016) Functional regulation of tristetraprolin through protein phosphorylation and protein-protein interaction. Graduate Institute of Biochemical Sciences College of Life Science National Taiwan University Master Thesis.
39. Dean, J.L., Sully, G., Clark, A.R., Saklatvala, J. (2004) The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell. Signal. 16:1113–1121
40. Engel, K., Schultz, H., Martin, F., Kotlyarov, A., Plath, K., Hahn, M., Heinemann, U., Gaestel, M. (1995) Constitutive activation of mitogen-activated protein kinase-activated protein kinase 2 by mutation of phosphorylation sites and an A-helix motif. J. Biol. Chem. 270:27213–27221
41. Schmidlin, M., et al. (2004) The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J. 23:4760–4769.
42. Sushmit Maitra, et al. (2008) The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. RNA. 14(5): 950–959.
43. Adachi S, et al. (2014) ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway. Nucleic Acids Res. 42(15):10037-10049
44. Felicitas Rataj, et al. (2016) The cAMP pathway regulates mRNA decay through phosphorylation of the RNA-binding protein TIS11b/BRF1. Mol Biol Cell. 27(24): 3841–3854.
45. Dong C., et al. (2002) MAP kinases in the immune response. Annu Rev Immunol. 20:55-72
46. Raman M., et al. (2007) Differential regulation and properties of MAPKs. Oncogene. 26(22):3100-3112.
47. Chen P., et al. (2002) Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol. 169(11):6408-6416.
48. Chi H., et al. (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A. 103(7):2274-2279
49. Liu Y, Shepherd EG, Nelin LD. (2007) MAPK phosphatases--regulating the immune response. Nat Rev Immunol. 7(3):202-212.
50. Deleault KM1, Skinner SJ, Brooks SA. (2008) Tristetraprolin regulates TNF TNF-alpha mRNA stability via a proteasome dependent mechanism involving the combined action of the ERK and p38 pathways. Mol Immunol. 45(1):13-24.
51. Lin NY, Lin CT, Chang CJ. (2008) Modulation of immediate early gene expression by tristetraprolin in the differentiation of 3T3-L1 cells. Biochem Biophys Res Commun. 365(1):69-74.
52. Wang KT, et al. (2015) Functional regulation of Zfp36l1 and Zfp36l2 in response to lipopolysaccharide in mouse RAW264.7 macrophages. J Inflamm (Lond). doi: 10.1186/s12950-015-0088-x.
53. Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL. (1996) Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 156(11):4457-4465
54. Stoecklin G., et al. (2008) Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem. 283(17):11689-11699.
55. Nien-Yi Lin, Chung-Tien Lin, Ching-Jin Chang (2007) Modulation of immediate early gene expression by tristetraprolin in the differentiation of 3T3-L1 cells. Biochemical and Biophysical Research Communications. Volume 365 p69-74
56. Kratochvill F., et al. (2011) Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Mol Syst Biol. Vol. 7, p.560
57. Brooks SA, Connolly JE, Rigby WF. (2004) The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway. J Immunol. 172(12):7263-7271
58. Sonkoly E, Pivarcsi A. (2009) microRNAs in inflammation. Int Rev Immunol. 28(6):535-61.
59. O'Connell RM, Rao DS, Baltimore D. (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol. 30:295-312.
60. J Contreras, D S Rao. (2012) MicroRNAs in inflammation and immune responses. Leukemia volume 26, p.404–413
61. Tili E, et al. (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179:5082–5089
62. S.W. Jones, G. Watkins, N. Le Good. (2009) The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage 17: 464–472
63. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med. 17:64–70
64. Hsin-Hui Hsieh. (2015) Phosphorylation of Tristetraprolin (TTP) by the ERK Signaling Pathway in the Early Differentiation of 3T3-L1 Preadipocyte. Graduate Institute of Biochemical Sciences College of Life Science National Taiwan University Master Thesis.
65. Lin NY, Lin TY, Yang WH, Wang SC, Wang KT, Su YL, et al. (2012) Differential expression and functional analysis of the tristetraprolin family during early differentiation of 3T3-L1 preadipocytes. Int J Biol Sci. 8:761–777.
66. John G Doench, et al. (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology volume 34, pages 184–191
67. Baohui Chen, et al. (2013) Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System. Volume 155, Issue 7, Pages 1479-1491
68. Steven Lin, Brett T Staahl, Ravi K Alla, Jennifer A Doudna. (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 3:e04766. doi: 10.7554/eLife.04766.
69. Chen YL, Huang YL, Lin NY, Chen HC, Chiu WC, Chang CJ (2006) Differential regulation of ARE-mediated TNFalpha and IL-1beta mRNA stability by lipopolysaccharide in RAW264.7 cells. Biochem Biophys Res Commun. 346(1):160-168.
70. Cong L., et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.
71. Ganiraju Manyam, Cristina Ivan, George A. Calin, and Kevin R. Coombes. (2013) targetHub: a programmable interface for miRNA–gene interactions. Bioinformatics. 29(20): 2657–2658.
72. Eduardo Andrés-León, Daniel González Peña, Gonzalo Gómez-López, and David G. Pisano. (2015) miRGate: a curated database of human, mouse and rat miRNA–mRNA targets. Database (Oxford). bav035. doi: 10.1093/database/bav035.
73. Kratochvill, F., Machacek, C., Vogl, C., Ebner, F., Sedlyarov, V., Gruber, A.R. (2011) Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Mol. Syst. Biol. 7, 560doi:10.1038
74. Andrew R. Clark and Jonathan L.E. Dean. (2016) The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochem Soc Trans. 44(5): 1321–1337.
75. Tiedje, C., Diaz-Muñoz, M.D., Trulley, P., Ahlfors, H., Laaß, K., Blackshear, P.J. (2016) The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Res. 44(15):7418-40
76. Xiao C, et al. (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat. Immunol. 9:405–414
77. Christina R. Ross, Sarah, E., Brennan-Laun, Gerald M., Wilson (2012) Tristetraprolin: Roles in cancer and senescence. Ageing Research Reviews. Volume 11 p473-484
78. Sandhya Sanduja, et al. (2012) The role of tristetraprolin in cancer and inflammation. Front Biosci. 17: 174–188
79. Rounbehler RJ, et al. (2012) Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell. 150(3):563-574.
80. Suswam E, et al. (2008) Tristetraprolin down-regulates interleukin-8 and vascular endothelial growth factor in malignant glioma cells. Cancer Res. 68(3):674-682.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69497-
dc.description.abstractmRNA穩定性的調節是控制基因表達的關鍵步驟,通常由RNA結合蛋白結合mRNA的3端非轉譯區去進行調控,例如:Tristetraprolin(TTP)蛋白家族成員結合3端非轉譯區中富含AU的區域(ARE),TTP蛋白家族中有四個成員,包含:TTP(ZFP36)、ZFP36L1、ZFP36L2和ZFP36L3其中皆包含保守的CCCH串聯鋅指和C端的NOT1結合結構域用於使含有ARE的mRNA失去穩定性。TTP蛋白家族的功能受其磷酸化的狀態和蛋白質之間的相互作用所影響。
我們先前的研究顯示TTP和Zfp36l1在脂多醣刺激的RAW264.7巨噬細胞中被磷酸化。在這份報告中,我們證明了TTP在受LPS刺激的RAW264.7細胞中被誘導表現,並且在Ser-316的位置被ERK信號通路所磷酸化,這破壞了它與CCR4-NOT脫腺苷酶複合物的相互作用,我們也發現Ser-316的位置會被蛋白磷酸酶2A(PP2A)所去磷酸化。之後我們藉由CRISPR / Cas9的技術在RAW264.7細胞中產生TTP敲除的細胞系。我們接著提供證據證明Zfp36l1的Ser-334(Ser-316的保守殘基)可以被Rsk1、PKA和MK2所磷酸化。此外,我們發現MK2可能不僅能磷酸化Ser-334,而且還有另外的磷酸化位點在Zfp36l1的C末端結構域上。在生化功能方面,Zfp36l1在Ser-334上的磷酸化會降低募集CCR4-NOT1複合物的能力,導致ARE介導的mRNA衰變活性的喪失。此外,我們在已經發表的微陣列數據中鑑定了LPS處理後瞬時上調的基因。通過生物信息學和統計學分析,我們在microRNA數據庫中分析這些基因,並提出一些能參與LPS刺激中扮演基因調控的潛在microRNA。其中之一的miR-27被證明是由LPS刺激所上調的,並通過與Zfp36l1 mRNA的3端非轉譯區結合而導致Zfp36L1的表現量下調。
在我們的研究中,我們揭示了TTP蛋白家族C-末端結構域上共有的磷酸化位點,其可以調節功能活性和影響蛋白質之間的相互作用。此外,miR-27是在LPS刺激的RAW264.7細胞中調節Zfp36L1表達的潛在微RNA。
zh_TW
dc.description.abstractRegulation of mRNA stability is a critical step to control gene expression. It is usually mediated by the RNA-binding proteins (RNA-BP) that bind to the 3’-untranslated region of mRNA, such as AU-rich elements (AREs). Tristetraprolin (TTP) protein family containing conserved CCCH tandem zinc-finger and C-terminal NOT1-binding domains contributes to the destabilization of ARE-containing mRNA. There are four members, TTP (ZFP36), ZFP36L1, ZFP36L2 and ZFP36L3 in TTP protein family. The function of TTP protein family is affected by its protein phosphorylated states and protein-protein interaction.
Our previous study showed that both TTP and Zfp36l1 proteins were phosphorylated in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In this report, we demonstrated that TTP was induced and phosphorylated at Ser-316 by ERK-signaling pathway in LPS-stimulated RAW264.7 cells, which disrupted its interaction with CCR4-NOT deadenylase complex and dephosphorylated by protein phosphatase 2A (PP2A). We also generate homozygous and heterozygous TTP knock-out cell lines by CRISPR/Cas9 system in RAW264.7 cell. Moreover, we provide evidence to prove that Ser-334 of Zfp36l1, the conserved residue of Ser-316, was phosphorylated by Rsk1, PKA and MK2. We found that MK2 may phosphorylate C-terminal domain of Zfp36l1 not only at Ser-334 but also at an additional site. In the biochemical function, phosphorylation of Zfp36l1 at Ser-334 would decline the ability to recruit the CCR4-NOT1 complex leading to decrease of MKP-1 ARE-mediated mRNA decay activity.
Additionally, we identified the transiently up-regulated genes after LPS treatment in published microarray data. Through bioinformatics and statistics, we analyze these genes in microRNA database and suggest some potential microRNAs involved in LPS-stimulated gene regulation. One of them, miR-27, was demonstrated to be up-regulated by LPS and correlated in down-regulation of Zfp36L1 through the 3’UTR of Zfp36l1 mRNA.
In our study, we revealed a consensus phosphorylated site on C-terminal domain of TTP protein family, which may regulate the functional activity and protein-protein interaction. Furthermore, miR27 is a potential microRNA that regulates the expression of Zfp36L1 in LPS-stimulated RAW264.7 cell.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:17:23Z (GMT). No. of bitstreams: 1
ntu-107-R05b46019-1.pdf: 4098519 bytes, checksum: 99553ac0263154c51a494a89f1ca40a7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
Contents vi
Abbreviations ix
Chapter 1 Introduction 1
1.1 ARE-mediated mRNA decay 1
1.2 Tristetraprolin family 1
1.3 The mechanism of ARE-containing mRNA destabilized by TTP family 2
1.4 The phosphorylation of TTP family proteins 3
1.5 TTP family proteins and miRNAs and innate immune response 5
1.6 Specific aims 6
Chapter 2 Material and Method 8
2.1 Plasmid constructs 8
2.2 Cell culture 9
2.3 Transfection 9
2.4 Immunoprecipitation 10
2.5 Western blot analysis 11
2.6 Antibodies and chemicals 11
2.7 Dual luciferase reporter assay 12
2.8 GST-tagged recombinant protein purification and GST pull-down assay 13
2.9 In vitro kinase assay 13
2.10 RNA Extraction and reverse transcription 14
2.11 Real-time PCR 15
2.12 Single guide RNA (sgRNA) preparation 15
2.13 In vitro T7 transcription 16
2.14 CRISPR/Cas9 gene editing 17
2.15 Genomic DNA extract 17
2.16 Analysis of TTP KO by genomic PCR 18
2.17 RNA pull-down assay 18
2.18 Micro-array and bioinformatics analysis 19
2.19 Statistical analysis 19
Chapter 3 Results 21
3.1 The phosphorylation of TTP at Ser-316 21
3.2 TTP knock-out by CRISPR/Cas9 in RAW264.7 cells 22
3.3 The phosphorylation site at C-terminal domain of Zfp36l1 23
3.4 The functional regulation of Ser-334 phosphorylation of Zfp36l1 24
3.5 The regulation of Zfp36l1 expression through potential miRNAs in innate immune response 25
3.6 Zfp36l1 is downregulated by miR-27 during LPS stimulation 26
Chapter 4 Discussion 27
Chapter 5 Figures 32
Figure 1. The phosphorylation of TTP at Ser-316. 35
Figure 2. TTP knock-out by CRISPR/Cas9 in RAW264.7 cells 41
Figure 3. The phosphorylation site at C-terminal domain of Zfp36l1 47
Figure 4. The functional regulation of Ser-334 phosphorylation of Zfp36l1 50
Figure 5. The regulation of Zfp36l1 through potential miRNAs in innate immune response. 54
Figure 6. Zfp36l1 is downregulated by miR-27 during LPS stimulation 58
Chapter 6 Tables 59
Table 1. Primers for Zfp36l1 mutation constructs 59
Table 2. Primers for real-time PCR 60
Table 3. Sequences for TTP knock-out in CRISPR/Cas9 system 61
Table 4. Code for potential miRNAs calculation 62
Table 5. The ARE score of each ARE-containing reporters 65
Chapter 7 Appendix 66
Support Figure 1. Gene editing in RAW264.7 cells by CRISPR/Cas9 69
Support Figure 2. TTP co-transfection with MKK3 70
Support Figure 3. The function regulation of Ser-334 phosphorylation of Zfp36l1 72
Support Figure 4. Hypothesized functional mechanism of S334-phosphorylated Zfp36l1 with Cnot1 and Dcp1a in different ARE-containing mRNAs. 73
Chapter 8 Reference 74
dc.language.isoen
dc.subjectTristetraprolinzh_TW
dc.subjectZfp36l1zh_TW
dc.subject磷酸化zh_TW
dc.subjectmiR-27zh_TW
dc.subjectRAW264.7zh_TW
dc.subjectZfp36l1en
dc.subjectphosphorylationen
dc.subjectmiR-27en
dc.subjectRAW264.7en
dc.subjectTristetraprolinen
dc.title在脂多醣刺激的RAW264.7中TTP家族蛋白的磷酸化與調節zh_TW
dc.titlePhosphorylation and regulation of tristetraprolin (TTP) family proteins in lipopolysaccharide-stimulated RAW264.7en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東,蕭超隆,凌嘉鴻
dc.subject.keywordTristetraprolin,Zfp36l1,磷酸化,miR-27,RAW264.7,zh_TW
dc.subject.keywordTristetraprolin,Zfp36l1,phosphorylation,miR-27,RAW264.7,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201801255
dc.rights.note有償授權
dc.date.accepted2018-07-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved