Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69490
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖泰慶(Albert Taiching Liao)
dc.contributor.authorKai-Jie Changen
dc.contributor.author張凱絜zh_TW
dc.date.accessioned2021-06-17T03:17:10Z-
dc.date.available2018-07-06
dc.date.copyright2018-07-06
dc.date.issued2018
dc.date.submitted2018-07-03
dc.identifier.citationReferences
Journal Articles
1. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M. scFv Antibody: Principles and Clinical Application. Clin Dev Immunol 2012, 2012.
2. Akiyama Y, Ashizawa T, Komiyama M, Miyata H, Oshita C, Omiya M, Iizuka A, Kume A, Sugino T, Hayashi N, Mitsuya K, Nakasu Y, Yamaguchi K. YKL-40 downregulation is a key factor to overcome temozolomide resistance in a glioblastoma cell line. Oncol Rep 32: 159-166, 2014.
3. Archer CW, Morrison H, Pitsillides AA. Cellular aspects of the development of diarthrodial joints and articular cartilage. J Anat 184 ( Pt 3): 447-456, 1994.
4. Areshkov PO, Avdieiev SS, Balynska OV, Leroith D, Kavsan VM. Two closely related human members of chitinase-like family, CHI3L1 and CHI3L2, activate ERK1/2 in 293 and U373 cells but have the different influence on cell proliferation. Int J Biol Sci 8: 39-48, 2012.
5. Armand S, Tomita H, Heyraud A, Gey C, Watanabe T, Henrissat B. Stereochemical course of the hydrolysis reaction catalyzed by chitinases A1 and D from Bacillus circulans WL-12. FEBS Lett 343: 177-180, 1994.
6. Bergmann OJ, Johansen JS, Klausen TW, Mylin AK, Kristensen JS, Kjeldsen E, Johnsen HE. High serum concentration of YKL-40 is associated with short survival in patients with acute myeloid leukemia. Clin Cancer Res 11: 8644-8652, 2005.
7. Boulikas T, Vougiouka M. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review). Oncol Rep 11: 559-595, 2004.
8. Chandramohan V, Bao X, Kato Kaneko M, Kato Y, Keir ST, Szafranski SE, Kuan CT, Pastan IH, Bigner DD. Recombinant anti-podoplanin (NZ-1) immunotoxin for the treatment of malignant brain tumors. Int J Cancer 132: 2339-2348, 2013.
9. Chudecka-Glaz A, Gorski B, Zielinska D, Blogowski W, Wojciechowska I, Bedner R, Rzepka-Gorska I. Serum YKL-40 levels in patients with ovarian cancer and women with BRCA1 gene mutation--comparison to CA 125 antigen. Eur J Gynaecol Oncol 30: 668-671, 2009.
10. Cintin C, Johansen JS, Christensen IJ, Price PA, Sorensen S, Nielsen HJ. Serum YKL-40 and colorectal cancer. Br J Cancer 79: 1494-1499, 1999.
11. Coffman FD. Chitinase 3-Like-1 (CHI3L1): a putative disease marker at the interface of proteomics and glycomics. Crit Rev Clin Lab Sci 45: 531-562, 2008.
12. Conroy AL, Hawkes MT, Elphinstone R, Opoka RO, Namasopo S, Miller C, John CC, Kain KC. Chitinase-3-like 1 is a biomarker of acute kidney injury and mortality in paediatric severe malaria. Malaria Journal 17: 11, 2018.
13. Dank G, Rassnick KM, Sokolovsky Y, Garrett LD, Post GS, Kitchell BE, Sellon RK, Kleiter M, Northrup N, Segev G. Use of adjuvant carboplatin for treatment of dogs with oral malignant melanoma following surgical excision. Vet Comp Oncol 12: 78-84, 2014.
14. Di Rosa M, Distefano G, Zorena K, Malaguarnera L. Chitinases and immunity: Ancestral molecules with new functions. Immunobiology 221: 399-411, 2016.
15. Di Rosa M, Malaguarnera G, De Gregorio C, Drago F, Malaguarnera L. Evaluation of CHI3L-1 and CHIT-1 Expression in Differentiated and Polarized Macrophages. Inflammation 36: 482-492, 2013.
16. Diaz-Lagares A, Alegre E, Arroyo A, Gonzalez-Cao M, Zudaire ME, Viteri S, Martin-Algarra S, Gonzalez A. Evaluation of multiple serum markers in advanced melanoma. Tumour Biol 32: 1155-1161, 2011.
17. Dolezal O, Pearce LA, Lawrence LJ, McCoy AJ, Hudson PJ, Kortt AA. ScFv multimers of the anti-neuraminidase antibody NC10: shortening of the linker in single-chain Fv fragment assembled in V-L to V-H orientation drives the formation of dimers, trimers, tetramers and higher molecular mass multimers. Protein Engineering 13: 565-574, 2000.
18. Emanuel PA, Dang J, Gebhardt JS, Aldrich J, Garber EA, Kulaga H, Stopa P, Valdes JJ, Dion-Schultz A. Recombinant antibodies: a new reagent for biological agent detection. Biosens Bioelectron 14: 751-759, 2000.
19. Faibish M, Francescone R, Bentley B, Yan W, Shao R. A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers. Mol Cancer Ther 10: 742-751, 2011.
20. Francescone RA. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J Biol Chem 286, 2011.
21. Francescone RA, Scully S, Faibish M, Taylor SL, Oh D, Moral L, Yan W, Bentley B, Shao R. Role of YKL-40 in the Angiogenesis, Radioresistance, and Progression of Glioblastoma. J Biol Chem 286: 15332-15343, 2011.
22. Frankel AE. Increased sophistication of immunotoxins. Clin Cancer Res 8: 942-944, 2002.
23. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer 3: 362, 2003.
24. Fuchs SM, Krajewski K, Baker RW, Miller VL, Strahl BD. Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr Biol 21: 53-58, 2011.
25. Fusetti F, Pijning T, Kalk KH, Bos E, Dijkstra BW. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem 278, 2003.
26. Gentilini D, Busacca M, Di Francesco S, Vignali M, Viganò P, Di Blasio AM. PI3K/Akt And ERK1/2 signalling pathways are involved in endometrial cell migration induced by 17β-estradiol and growth factors. MHR: Basic science of reproductive medicine 13: 317-322, 2007.
27. Grüntzig K, Graf R, Boo G, Guscetti F, Hässig M, Axhausen KW, Fabrikant S, Welle M, Meier D, Folkers G, Pospischil A. Swiss Canine Cancer Registry 1955–2008: Occurrence of the Most Common Tumour Diagnoses and Influence of Age, Breed, Body Size, Sex and Neutering Status on Tumour Development. Journal of Comparative Pathology 155: 156-170, 2016.
28. Gu X, Jia X, Feng J, Shen B, Huang Y, Geng S, Sun Y, Wang Y, Li Y, Long M. Molecular Modeling and Affinity Determination of scFv Antibody: Proper Linker Peptide Enhances Its Activity. Annals of Biomedical Engineering 38: 537-549, 2010.
29. Guo JQ, You SY, Li L, Zhang YZ, Huang JN, Zhang CY. Construction and high-level expression of a single-chain Fv antibody fragment specific for acidic isoferritin in Escherichia coli. J Biotechnol 102: 177-189, 2003.
30. Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: A review. Critical Reviews in Microbiology 43: 31-42, 2017.
31. Haidaris CG, Malone J, Sherrill LA, Bliss JM, Gaspari AA, Insel RA, Sullivan MA. Recombinant human antibody single chain variable fragments reactive with Candida albicans surface antigens. J Immunol Methods 257: 185-202, 2001.
32. Hakala BE, White C, Recklies AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem 268, 1993.
33. Hanahan D, Weinberg Robert A. Hallmarks of Cancer: The Next Generation. Cell 144: 646-674.
34. Harrington KJ, Mubashar M, Peters AM. Polyethylene glycol in the design of tumor-targetting radiolabelled macromolecules -- lessons from liposomes and monoclonal antibodies. Q J Nucl Med 46: 171-180, 2002.
35. Harvey S, Weisman M, O'Dell J, Scott T, Krusemeier M, Visor J, Swindlehurst C. Chondrex: new marker of joint disease. Clin Chem 44: 509-516, 1998.
36. Hogdall EV, Johansen JS, Kjaer SK, Price PA, Christensen L, Blaakaer J, Bock JE, Glud E, Hogdall CK. High plasma YKL-40 level in patients with ovarian cancer stage III is related to shorter survival. Oncol Rep 10: 1535-1538, 2003.
37. Hogdall EV, Ringsholt M, Hogdall CK, Christensen IJ, Johansen JS, Kjaer SK, Blaakaer J, Ostenfeld-Moller L, Price PA, Christensen LH. YKL-40 tissue expression and plasma levels in patients with ovarian cancer. BMC Cancer 9: 8, 2009.
38. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19: 4133-4137, 1991.
39. Hormigo A, Gu B, Karimi S, Riedel E, Panageas KS, Edgar MA, Tanwar MK, Rao JS, Fleisher M, DeAngelis LM, Holland EC. YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin Cancer Res 12: 5698-5704, 2006.
40. Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z, Thannickal VJ. Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal 19: 761-771, 2007.
41. Hou S, Isaji T, Hang Q, Im S, Fukuda T, Gu J. Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Sci Rep 6, 2016.
42. Howlett AR, Bailey N, Damsky C, Petersen OW, Bissell MJ. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma. J Cell Sci 108 ( Pt 5): 1945-1957, 1995.
43. Huang W-H, Liao AT, Chu P-Y, Zhai S-H, Yen IF, Liu C-H. A 3-year surveillance on causes of death or reasons for euthanasia of domesticated dogs in Taiwan. Preventive Veterinary Medicine 147: 1-10, 2017.
44. Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S. Single chain Fab (scFab) fragment. BMC Biotechnol 7: 14, 2007.
45. Iwamoto FM, Hottinger AF, Karimi S, Riedel E, Dantis J, Jahdi M, Panageas KS, Lassman AB, Abrey LE, Fleisher M, DeAngelis LM, Holland EC, Hormigo A. Serum YKL-40 is a marker of prognosis and disease status in high-grade gliomas. Neuro Oncol 13: 1244-1251, 2011.
46. Jensen BV, Johansen JS, Price PA. High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer. Clin Cancer Res 9: 4423-4434, 2003.
47. Johansen JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull 53: 172-209, 2006.
48. Johansen JS, Christensen IJ, Jorgensen LN, Olsen J, Rahr HB, Nielsen KT, Laurberg S, Brunner N, Nielsen HJ. Serum YKL-40 in risk assessment for colorectal cancer: a prospective study of 4,496 subjects at risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 24: 621-626, 2015.
49. Johansen JS, Christensen IJ, Riisbro R, Greenall M, Han C, Price PA, Smith K, Brunner N, Harris AL. High serum YKL-40 levels in patients with primary breast cancer is related to short recurrence free survival. Breast Cancer Res Treat 80: 15-21, 2003.
50. Johansen JS, Christoffersen P, Moller S, Price PA, Henriksen JH, Garbarsch C, Bendtsen F. Serum YKL-40 is increased in patients with hepatic fibrosis. J Hepatol 32: 911-920, 2000.
51. Johansen JS, Hoyer PE, Larsen LA, Price PA, Mollgard K. YKL-40 protein expression in the early developing human musculoskeletal system. J Histochem Cytochem 55, 2007.
52. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev 15, 2006a.
53. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev 15: 194-202, 2006b.
54. Johansen JS, Moller S, Price PA, Bendtsen F, Junge J, Garbarsch C, Henriksen JH. Plasma YKL-40: a new potential marker of fibrosis in patients with alcoholic cirrhosis? Scand J Gastroenterol 32: 582-590, 1997.
55. Johansen JS, Schultz NA, Jensen BV. Plasma YKL-40: a potential new cancer biomarker? Future Oncol 5: 1065-1082, 2009.
56. Johansen JS, Williamson MK, Rice JS, Price PA. Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res 7: 501-512, 1992.
57. Junker N, Johansen JS, Andersen CB, Kristjansen PE. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer 48: 223-231, 2005.
58. Kang EJ, Jung H, Woo OH, Park KH, Woo SU, Yang DS, Kim AR, Lee JB, Kim YH, Kim JS, Seo JH. YKL-40 expression could be a poor prognostic marker in the breast cancer tissue. Tumour Biol 35: 277-286, 2014.
59. Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, Kawada K, Sakai Y, Mizoguchi E, Chiba T. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene 31: 3111-3123, 2012.
60. Kim KY, Ahn Y, Kim DY, Kim HS, Kim DS. Elevated serum YKL-40 levels in patients with Kawasaki disease. Biomarkers: 1-17, 2016.
61. Kjaergaard AD, Johansen JS, Bojesen SE, Nordestgaard BG. Elevated plasma YKL-40, lipids and lipoproteins, and ischemic vascular disease in the general population. Stroke 46: 329-335, 2015a.
62. Kjaergaard AD, Johansen JS, Bojesen SE, Nordestgaard BG. Role of inflammatory marker YKL-40 in the diagnosis, prognosis and cause of cardiovascular and liver diseases. Crit Rev Clin Lab Sci 53: 396-408, 2016.
63. Kjaergaard AD, Nordestgaard BG, Johansen JS, Bojesen SE. Observational and genetic plasma YKL-40 and cancer in 96,099 individuals from the general population. Int J Cancer 137: 2696-2704, 2015b.
64. Kontermann RE, Wing MG, Winter G. Complement recruitment using bispecific diabodies. Nat Biotechnol 15: 629-631, 1997.
65. Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Pluckthun A. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201: 35-55, 1997.
66. Kreitman RJ. Toxin-labeled monoclonal antibodies. Curr Pharm Biotechnol 2: 313-325, 2001.
67. Ku BM, Lee YK, Ryu J, Jeong JY, Choi J, Eun KM. CHI3L1 (YKL-40) is expressed in human gliomas and regulates the invasion, growth and survival of glioma cells. Int J Cancer 128, 2011.
68. Kzhyshkowska J, Yin S, Liu T, Riabov V, Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem 397: 231-247, 2016.
69. Lal A, Lash AE, Altschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, Prange C, Morin PJ, Polyak K, Papadopoulos N, Vogelstein B, Kinzler KW, Strausberg RL, Riggins GJ. A public database for gene expression in human cancers. Cancer Res 59: 5403-5407, 1999.
70. Lau SH, Sham JS, Xie D, Tzang CH, Tang D, Ma N, Hu L, Wang Y, Wen JM, Xiao G, Zhang WM, Lau GK, Yang M, Guan XY. Clusterin plays an important role in hepatocellular carcinoma metastasis. Oncogene 25: 1242-1250, 2006.
71. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 73: 479-501, 2011.
72. Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, Sohn MH, Cohn L, Homer RJ, Kozhich AA, Humbles A, Kearley J, Coyle A, Chupp G, Reed J, Flavell RA, Elias JA. Role of breast regression protein 39(BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med 206, 2009.
73. Li N, Yang Y. Therapeutic use of an anti-ErbB3 monoclonal antibody. Hybridoma (Larchmt) 31: 149-154, 2012.
74. Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol Res 57: 99-105, 2013.
75. Libreros S, Garcia-Areas R, Shibata Y, Carrio R, Torroella-Kouri M, Iragavarapu-Charyulu V. Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: decreased tumor metastasis in a breast cancer model. Int J Cancer 131: 377-386, 2012.
76. Libreros S, Iragavarapu-Charyulu V. YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J Leukoc Biol 98: 931-936, 2015.
77. Low D, Subramaniam R, Lin L, Aomatsu T, Mizoguchi A, Ng A, DeGruttola AK, Lee CG, Elias JA, Andoh A, Mino-Kenudson M, Mizoguchi E. Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget 6: 36535-36550, 2015.
78. Luka J, Arlen PM, Bristol A. Development of a serum biomarker assay that differentiates tumor-associated MUC5AC (NPC-1C ANTIGEN) from normal MUC5AC. J Biomed Biotechnol 2011: 934757, 2011.
79. Maggon K. Monoclonal antibody 'gold rush'. Curr Med Chem 14: 1978-1987, 2007.
80. Malik P, Chaudhry N, Mittal R, Mukherjee TK. Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim Biophys Acta 1850: 1898-1904, 2015.
81. Markert JM, Parker JN, Gillespie GY, Whitley RJ. Genetically engineered human herpes simplex virus in the treatment of brain tumours. Herpes 8: 17-22, 2001.
82. Mitsuhashi A, Matsui H, Usui H, Nagai Y, Tate S, Unno Y, Hirashiki K, Seki K, Shozu M. Serum YKL-40 as a marker for cervical adenocarcinoma. Ann Oncol 20: 71-77, 2009.
83. Mizoguchi E. Chitinase 3–Like-1 Exacerbates Intestinal Inflammation by Enhancing Bacterial Adhesion and Invasion in Colonic Epithelial Cells. Gastroenterology 130: 398-411, 2006.
84. Modi S, Seidman AD. An update on epidermal growth factor receptor inhibitors. Curr Oncol Rep 4: 47-55, 2002.
85. Muszynski P, Groblewska M, Kulczynska-Przybik A, Kulakowska A, Mroczko B. YKL-40 as a Potential Biomarker and a Possible Target in Therapeutic Strategies of Alzheimer's Disease. Curr Neuropharmacol 15: 906-917, 2017.
86. Nagata S, Onda M, Numata Y, Santora K, Beers R, Kreitman RJ, Pastan I. Novel anti-CD30 recombinant immunotoxins containing disulfide-stabilized Fv fragments. Clin Cancer Res 8: 2345-2355, 2002.
87. Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol 27: 331-337, 2009.
88. Nielsen AR, Plomgaard P, Krabbe KS, Johansen JS, Pedersen BK. IL-6, but not TNF-α, increases plasma YKL-40 in human subjects. Cytokine 55: 152-155, 2011.
89. Nojgaard C, Host NB, Christensen IJ, Poulsen SH, Egstrup K, Price PA, Johansen JS. Serum levels of YKL-40 increases in patients with acute myocardial infarction. Coron Artery Dis 19: 257-263, 2008.
90. Nordenbaek C, Johansen JS, Junker P, Borregaard N, Sorensen O, Price PA. YKL-40, a matrix protein of specific granules in neutrophils, is elevated in serum of patients with community-acquired pneumonia requiring hospitalization. J Infect Dis 180: 1722-1726, 1999.
91. Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ, Bissell MJ. Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 66: 1526-1535, 2006.
92. Park HY, Jun CD, Jeon SJ, Choi SS, Kim HR, Choi DB, Kwak S, Lee HS, Cheong JS, So HS, Lee YJ, Park DS. Serum YKL-40 levels correlate with infarct volume, stroke severity, and functional outcome in acute ischemic stroke patients. PLoS One 7: e51722, 2012.
93. Peipp M, Kupers H, Saul D, Schlierf B, Greil J, Zunino SJ, Gramatzki M, Fey GH. A recombinant CD7-specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells. Cancer Res 62: 2848-2855, 2002.
94. Pelloski CE, Mahajan A, Maor M, Chang EL, Woo S, Gilbert M, Colman H, Yang H, Ledoux A, Blair H, Passe S, Jenkins RB, Aldape KD. YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin Cancer Res 11: 3326-3334, 2005.
95. Qureshi AM, Hannigan A, Campbell D, Nixon C, Wilson JB. Chitinase-like proteins are autoantigens in a model of inflammation-promoted incipient neoplasia. Genes Cancer 2: 74-87, 2011.
96. Rajawat R, Narkar A, Damle A, Kumar GB, Mishra KP. A single-chain antibody fragment against human thyroglobulin: construction and evaluation of immunoreactivity. Hybridoma (Larchmt) 30: 253-259, 2011.
97. Rathcke CN, Vestergaard H. YKL-40 - an emerging biomarker in cardiovascular disease and diabetes. Cardiovascular Diabetology 8: 61, 2009.
98. Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39(CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics 43, 1997.
99. Roslind A, Knoop AS, Jensen MB, Johansen JS, Nielsen DL, Price PA, Balslev E. YKL-40 protein expression is not a prognostic marker in patients with primary breast cancer. Breast Cancer Res Treat 112: 275-285, 2008.
100. Salamon J, Hoffmann T, Elies E, Peldschus K, Johansen JS, Lüers G, Schumacher U, Wicklein D. Antibody Directed against Human YKL-40 Increases Tumor Volume in a Human Melanoma Xenograft Model in Scid Mice. PLoS One 9, 2014.
101. Salavatifar M, Amin S, Jahromi ZM, Rasgoo N, Rastgoo N, Arbabi M. Green fluorescent-conjugated anti-CEA single chain antibody for the detection of CEA-positive cancer cells. Hybridoma (Larchmt) 30: 229-238, 2011.
102. Salvatore V, Teti G, Focaroli S, Mazzotti MC, Mazzotti A, Falconi M. The tumor microenvironment promotes cancer progression and cell migration. Oncotarget 8: 9608-9616, 2017.
103. Sanz L, Cuesta AM, Compte M, Alvarez-Vallina L. Antibody engineering: facing new challenges in cancer therapy. Acta Pharmacol Sin 26: 641-648, 2005.
104. Schiffman JD, Breen M. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos Trans R Soc Lond B Biol Sci 370, 2015.
105. Schmidt H, Johansen JS, Gehl J, Geertsen PF, Fode K, von der Maase H. Elevated serum level of YKL-40 is an independent prognostic factor for poor survival in patients with metastatic melanoma. Cancer 106: 1130-1139, 2006a.
106. Schmidt H, Johansen JS, Sjoegren P, Christensen IJ, Sorensen BS, Fode K, Larsen J, von der Maase H. Serum YKL-40 predicts relapse-free and overall survival in patients with American Joint Committee on Cancer stage I and II melanoma. J Clin Oncol 24: 798-804, 2006b.
107. Schultz NA, Christensen IJ, Werner J, Giese N, Jensen BV, Larsen O, Bjerregaard JK, Pfeiffer P, Calatayud D, Nielsen SE, Yilmaz MK, Hollander NH, Wojdemann M, Bojesen SE, Nielsen KR, Johansen JS. Diagnostic and Prognostic Impact of Circulating YKL-40, IL-6, and CA 19.9 in Patients with Pancreatic Cancer. PLoS One 8: e67059, 2013.
108. Shackelton LM, Mann DM, Millis AJ. Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J Biol Chem 270, 1995.
109. Shadidi M, Sioud M. An anti-leukemic single chain Fv antibody selected from a synthetic human phage antibody library. Biochem Biophys Res Commun 280: 548-552, 2001.
110. Shao R, Cao QJ, Arenas RB, Bigelow C, Bentley B, Yan W. Breast cancer expression of YKL-40 correlates with tumour grade, poor differentiation, and other cancer markers. Br J Cancer 105: 1203-1209, 2011.
111. Shao R, Francescone R, Ngernyuang N, Bentley B, Taylor SL, Moral L, Yan W. Anti-YKL-40 antibody and ionizing irradiation synergistically inhibit tumor vascularization and malignancy in glioblastoma. Carcinogenesis 35: 373-382, 2014.
112. Shao R, Hamel K, Petersen L, Cao QJ, Arenas RB, Bigelow C, Bentley B, Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. In: Oncogene. 2009a.
113. Shao R, Hamel K, Petersen L, Cao QJ, Arenas RB, Bigelow C, Bentley B, Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene 28: 4456-4468, 2009b.
114. Sharif M, Granell R, Johansen J, Clarke S, Elson C, Kirwan JR. Serum cartilage oligomeric matrix protein and other biomarker profiles in tibiofemoral and patellofemoral osteoarthritis of the knee. Rheumatology (Oxford) 45: 522-526, 2006.
115. Specjalski K, Chełmińska M, Jassem E. YKL-40 Protein Correlates with the Phenotype of Asthma. Lung 193: 189-194, 2015.
116. Tschirdewahn S, Reis H, Niedworok C, Nyirady P, Szendroi A, Schmid KW, Shariat SF, Kramer G, vom Dorp F, Rubben H, Szarvas T. Prognostic effect of serum and tissue YKL-40 levels in bladder cancer. Urol Oncol 32: 663-669, 2014.
117. Wang F, Hansen RK, Radisky D, Yoneda T, Barcellos-Hoff MH, Petersen OW, Turley EA, Bissell MJ. Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J Natl Cancer Inst 94: 1494-1503, 2002.
118. Wang Y, Ripa RS, Johansen JS, Gabrielsen A, Steinbruchel DA, Friis T, Bindslev L, Haack-Sorensen M, Jorgensen E, Kastrup J. YKL-40 a new biomarker in patients with acute coronary syndrome or stable coronary artery disease. Scand Cardiovasc J 42, 2008.
119. Wang ZD, Raifu M, Howard M, Smith L, Hansen D, Goldsby R, Ratner D. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3 ' to 5 ' exonuclease activity. Journal of Immunological Methods 233: 167-177, 2000.
120. Xu CH, Yu LK, Hao KK. Serum YKL-40 level is associated with the chemotherapy response and prognosis of patients with small cell lung cancer. PLoS One 9: e96384, 2014.
121. Yan J, Shen P, Zheng J, Liu M. Clinical correlation between serum YKL-40 protein level and recurrence of non-muscle invasive bladder cancer. Ann Transl Med 3, 2015.
122. Yang J, Wang S, Tian L, Zhang L, Li B, Dong C, Liu Z, Qi C. Development of neutralizing monoclonal antibodies against VP4 of rotavirus CC0812-1. Hybridoma (Larchmt) 31: 279-283, 2012.
123. Yusakul G, Sakamoto S, Pongkitwitoon B, Tanaka H, Morimoto S. Effect of linker length between variable domains of single chain variable fragment antibody against daidzin on its reactivity. Bioscience, Biotechnology, and Biochemistry 80: 1306-1312, 2016.
124. Zhang Y, Gong Y, Hu D, Zhu P, Wang N, Zhang Q, Wang M, Aldeewan A, Xia H, Qu X, Ring BZ, Minato N, Su L. Nuclear SIPA1 activates integrin beta1 promoter and promotes invasion of breast cancer cells. Oncogene 34: 1451-1462, 2015.
125. Zheng X, Xing S, Liu XM, Liu W, Liu D, Chi PD, Chen H, Dai SQ, Zhong Q, Zeng MS, Liu WL. Establishment of using serum YKL-40 and SCCA in combination for the diagnosis of patients with esophageal squamous cell carcinoma. BMC Cancer 14: 490, 2014.
Thesis
1. Cheng K-C, Development and Characterization of Canine YKL-40 Monoclonal Antibody for Canine Cancer Research, M.S. thesis, National Taiwan University, Taiwan, 2015.
2. Lin C-Y, Recombinant Canine YKL-40 Expression and Its Effects on Canine Mammary Gland Tumor Cells, M.S. thesis, National Taiwan University, Taiwan, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69490-
dc.description.abstractYKL-40是一種分泌型的醣蛋白,因其結構類似幾丁酶,具有與幾丁質結合之能力,但不具有酵素的功能,又名為CHI3L1 (chitinase-3-like-1),在近期研究中被認為可能是人類癌症的一個biomarker;在人醫許多癌症研究中發現,當患者血清中YKL-40 含量較高時,其預後及存活率較差。我們先前在犬隻相關的研究中也有相似的發現 ,因此研究室已經製備了三株抗犬YKL-40之單株抗體,這些單株抗體除了可以在不同試驗中標定YKL40外,在細胞學試驗也證實他們具有抑制因YKL40所促發的移行 (migration)、侵潤 (invasion) 以及管腺生成 (tubulogenesis) 等作用;然而傳統的融合瘤製備及保存方式較為繁瑣,且較不穩定,因此,本研究擬選殖出上述三株抗犬YKL-40單株抗體之單鏈變異區片段抗體 (single-chain variable fragment antibody, scFv Ab),並以大腸桿菌表現系統進行大量表現,以應用於犬癌症的相關研究。首先,以基因工程技術選殖出上述單株抗體變異區的重鏈及輕鏈基因序列,透過重疊延伸聚合酶鏈鎖反應 (SOE-PCR) 將兩段序列連接,之後架構於載體中,再由大腸桿菌表現系統進行表現及純化。接著以酵素免疫分析法 (ELISA)、西方墨點法、免疫螢光染色確認產製的單鏈變異區片段抗體能夠辨識犬隻重組YKL-40 (rcYKL-40)及天然型態YKL-40 (nYKL-40)。另外在以犬黑色素瘤為標的細胞學試驗中發現,本研究中製備的scFv/M2及scFv/M3抗體則能有效抑制因YKL-40所促發的細胞移行及侵潤能力;在細胞存活試驗中,添加scFv/M2抗體後能夠降低細胞存活率,且能幫助化療藥物抑制腫瘤增生。在細胞訊息傳遞路徑上,發現YKL-40具有活化MAPK的能力,而添加scFv/M2抗體能夠抑制AKT及MAPK的磷酸化。最後,以scFv/M2抗體建立的酵素免疫分析法檢測犬血清中YKL-40的含量,癌症犬血清中的YKL-40量顯著地較非癌症犬為高。綜合以上的結果,本研究成功以基因工程方式產出犬YKL-40的scFv Abs,這些scFv Abs除了可以標定犬YKL-40外,也可以抑制犬黑色素瘤細胞的一些癌化特性,同時也用來建立ELISA,確認癌症犬血中有較高量的YKL-40,因此這些scFv Abs未來有許多有潛力開發作為犬腫瘤治療及診斷之用。zh_TW
dc.description.abstractYKL-40, also known as CHI3L1 (chitinase-3-like-1), is a secretory glycoprotein with chitinase like structure and chitin-binding affinity, but has no chitinase activity. In recent study, YKL-40 is considered a cancer biomarker in human cancers. Patients with elevated serum level of YKL-40 is correlated with poor survival and bad prognosis in a variety of human cancers. Our study in dog cancer cases has also revealed this similar finding. Inspired by this, previous studies in our lab have developed three mouse mAbs (monoclonal antibodies) against canine YKL-40 through hybridoma technology. Except recognized YKL-40 in several assay, the developed mouse mAbs also has presented the ability to inhibit YKL-40 induced cellular functions including migration, invasion and tubulogenesis, etc. However, through the hybridoma technology to produce antibody is complex and unstable. Thus, to preserve these mAbs forever and expand their applications, the aims of my study are to generate their scFv (single-chain variable fragment) Abs, which can be expressed through the prokaryotic expression system to facilitate mass production, and characterize them for future applications on canine cancer research. To these ends, the DNA fragments of variable region of heavy chain and light chain were respectively amplified from the hybridoma cells and were connected become scFv DNA fragments through splicing by SOE-PCR (overlap extension polymerase chain reaction). The scFv DNA fragments were ligated to the vector and expressed by E.coli expression system. Next, various assays including ELISA, Western blot, IP and immunofluorescence assay were used to verify the binding specificity of purified scFv Abs to the rcYKL-40 (recombinant canine) and nature form YKL-40. In cellular assays of canine melanoma cells, the migration and invasion ability elicited by rcYKL-40 was blocked by two of scFv Abs, scFv/M2 and scFv/M3. Next, we III found application of scFv Abs, scFv/M2, decreased the cell viability of cancer cells and promoted the chemotherapy to inhibit the cell proliferation. In signal transduction analysis, MAPK activity could be activated by rcYKL-40, and the M2/scFv could effectively reduce activation of Akt and MAPK. Finally, an indirect ELISA was established using scFv/M2 to detect YKL-40 levels in canine serum. The results showed serum YKL-40 levels of cancer dog were significantly elevated compared to that in non-cancer dog. In conclusions, canine YKL-40 scFv Abs were successfully cloned and expressed through the genetic engineering. These scFv Abs could recognize canine YKL-40 and inhibit the various cellular functions elicited by rcYKL-40 on canine melanoma cells. Also, an established ELISA using our scFv mAbs reconfirmed our previous finding which elevated YKL-40 levels existed in dogs with cancer. Thus, these scFv Abs we generated might have the potential to develop as diagnostic tools and therapeutic agents for canine cancer in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:17:10Z (GMT). No. of bitstreams: 1
ntu-107-R05629008-1.pdf: 3577514 bytes, checksum: 04279a1cd3afa6f35ca222e9e35a9d7a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 I
Abstract II
Contents IV
Abbreviations VIII
Chapter 1. Background and Literatures Review 1
1.1 YKL-40 1
1.1.1 The correlation between YKL-40 and cancer disease 2
1.1.2 The signaling pathway which YKL-40 may involved 3
1.1.3 The possible mechanism of YKL-40 causing cancer 5
1.2 Single-chain fragments variable region (scfv) technology 6
1.2.1 Clinical indications 9
1.2.2 Bifunctional antibodies for diagnosis and treatment 9
1.3 Chitinases like protein and immunity 11
1.3.1 YKL-40 is an autoantigen 11
1.3.2 YKL-40 and immunity system 12
1.4 Cancer in dog 14
1.4.1 The most common tumor diagnoses 15
1.4.2 Possible influence factor on tumor development 15
1.5 Conclusion 16
Chapter 2. Introduction 18
Chapter 3. Materials and Methods 20
3.1 Cell cultures 20
3.2 Cancer and non cancer dogs serum/plasma collection 20
3.3 Development of anti YKL-40 scFv antibodies 21
3.3.1 Primers used in this study 22
3.3.2 RNA extraction and cDNA synthesis 22
3.3.3 Amplification of VL and VH amplicons 23
3.3.4 SOE-PCR to generate of scFv DNA fragments 23
3.3.5 Prokaryotic expression of scFv constructs 24
3.3.6 Purification of recombinant scFv protein 25
3.4 Western blot analysis 26
3.5 Immunoprecipitation 28
3.6 Immunofluorescence assay 29
3.7 Proliferation assay 29
3.8 Migration assay 30
3.9 Invasion assay 31
3.10 Cell viability assay 32
3.11 Cell signaling analysis 33
3.12 Serum/Plasma YKL-40 detection by indirect ELISA 34
3.13 Statistical analysis 35
Chapter 4. Results 35
4.1 Generation of canine YKL-40 scFv antibodies 35
4.1.1 Amplification and analysis of scFv fragments 35
4.1.2 Expression and purification of scFv Abs 36
4.2 scFv antibodies validiation 37
4.2.1 Western blot analysis of scFv 37
4.2.2 Determination of scFv Abs binding ability of YKL-40 antigen by indirect ELISA, westetn blot, IFA and immunoprecipitation 37
4.3 The biological functions induced by canine YKL-40 protein were reversed by scFv Abs 38
4.3.1 Proliferation assay 38
4.3.2 Migration assay 38
4.3.3 Invasion assay 39
4.3.4 Cell viability assay 39
4.4 Cell signaling analysis 40
4.5 Establish the indirect ELISA by scFv Ab to detect serum level of YKL-40 40
Chapter 5. Discussion 41
Tables 55
Table 1. The primers used for PCR of YKL-40 scFv 55
Table 2. Demographic of cancer dog cases recruited from NTUVH and JCACVH. 56
Figures 57
Figure A. Cancer hallmark and the role of YKL-40 57
Figure B. Cause of death or reason for euthanasia domesticated dogs in Taiwan. 58
Figure C . A working model for the role of chitinases and CLPs in disease 59
Figure D. SOE-PCR 60
Figure E. Schematic diagram of construction of PGEX-4T-1. 61
Figure F. scFv protein secondary structure prediction map. 62
Figure 1. Amplification of VH and VL amplicons from three mAbs. 63
Figure 2. SOE-PCR and restriction enzyme cleavage. 64
Figure 3. Identification of the scFv Abs. 65
Figure 4. Analysis of purified scFv Abs. 66
Figure 5. Binding affinity test of scFv by indirect ELISA, western blot and IFA 69
Figure 6. Proliferation of cancer cells and non-cancer cells treated by YKL-40 70
Figure 7. Migration assay of CM01. 71
Figure 8. Migration assay of UCDK9M5. 72
Figure 9. Invasion assay of CM01. 73
Figure 10. Invasion assay of UCDK9M5. 74
Figure 11. Viability assay of CM01 cells under chemotherapy. 75
Figure 12. Viability assay of UCDK9M5 cells under chemotherapy. 76
Figure 13. Cell viability of canine non cancer cells. 77
Figure 14. Alteration of CM01 and UCDK9M5 cell signaling under rcYKL-40 and scFv Abs treatment. 78
Figure 15. Establishment of ELISA using scFv Abs. 79
Figure 16. Serum/plasma YKL-40 of cancer and non cancer dogs. 80
Figure 17. Serum YKL-40 level of recheck cancer dogs. 81
References 82
dc.language.isoen
dc.subject腫瘤抑制zh_TW
dc.subject酵素免疫分析法zh_TW
dc.subject癌症zh_TW
dc.subject犬zh_TW
dc.subject單鏈變異區片段抗體zh_TW
dc.subjectYKL-40zh_TW
dc.subjectYKL-40en
dc.subjectscFv Aben
dc.subjectcanineen
dc.subjectcanceren
dc.subjectELISAen
dc.subjecttumor suppressionen
dc.title以基因工程產生 YKL-40 單鏈變異區片段抗體 (scFv) 用於犬癌症之研究zh_TW
dc.titleEngineering of Canine YKL-40 scFv Antibodies for Canine Cancer Researchen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭村勇(Tsun-Yung Kuo),林辰栖(Chen-Si Lin),王愈善(Samuel Yu-Shan Wang),李繼忠(Jih-Jong Lee)
dc.subject.keywordYKL-40,單鏈變異區片段抗體,犬,癌症,酵素免疫分析法,腫瘤抑制,zh_TW
dc.subject.keywordYKL-40,scFv Ab,canine,cancer,ELISA,tumor suppression,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201800773
dc.rights.note有償授權
dc.date.accepted2018-07-03
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved