Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69470
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorYu-Hung Liangen
dc.contributor.author梁鈺弘zh_TW
dc.date.accessioned2021-06-17T03:16:36Z-
dc.date.available2018-07-19
dc.date.copyright2018-07-19
dc.date.issued2018
dc.date.submitted2018-07-03
dc.identifier.citation1. Young, R.J., et al., The mechanics of graphene nanocomposites: A review. Composites Science and Technology, 2012. 72(12): p. 1459-1476.
2. Wallace, P.R., The Band Theory of Graphite. Physical Review, 1947. 71(7): p. 476-476.
3. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
4. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
5. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
6. Boehm, H.P., R. Setton, and E. Stumpp, Nomenclature and Terminology of Graphite-Intercalation Compounds (Iupac Recommendations 1994). Pure and Applied Chemistry, 1994. 66(9): p. 1893-1901.
7. Guisinger, N.P. and M.S. Arnold, Beyond Silicon: Carbon-Based Nanotechnology. Mrs Bulletin, 2010. 35(4): p. 273-276.
8. Schwierz, F., Graphene Transistors: Status, Prospects, and Problems. Proceedings of the Ieee, 2013. 101(7): p. 1567-1584.
9. Bae, S., et al., Towards industrial applications of graphene electrodes. Physica Scripta, 2012. T146.
10. Wu, W., et al., Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors and Actuators B-Chemical, 2010. 150(1): p. 296-300.
11. Liu, F., P.M. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 2007. 76(6).
12. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
13. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007. 6(9): p. 652-655.
14. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
15. Geim, A.K., Graphene: Status and Prospects. Science, 2009. 324(5934): p. 1530-1534.
16. Zhang, Y.B., et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005. 438(7065): p. 201-204.
17. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
18. Brodie, B.C., Sur le poids atomique du graphite. Annales de Chimie et de Physique, 1960: p. 59, 466-472.
19. Staudenmaier, L., Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft, 1898. 31.2: p. 1481-1487.
20. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
21. Compton, O.C. and S.T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 2010. 6(6): p. 711-723.
22. Schniepp, H.C., et al., Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 2006. 110(17): p. 8535-8539.
23. McAllister, M.J., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 2007. 19(18): p. 4396-4404.
24. Shin, H.J., et al., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 2009. 19(12): p. 1987-1992.
25. Pei, S.F. and H.M. Cheng, The reduction of graphene oxide. Carbon, 2012. 50(9): p. 3210-3228.
26. Forbeaux, I., J.M. Themlin, and J.M. Debever, High-temperature graphitization of the 6H-SiC (000(1)over-bar) face. Surface Science, 1999. 442(1): p. 9-18.
27. Johansson, L.I., F. Owman, and P. Martensson, High-resolution core-level study of 6H-SiC(0001). Physical Review B, 1996. 53(20): p. 13793-13802.
28. Avouris, P. and C. Dimitrakopoulos, Graphene: synthesis and applications. Materials Today, 2012. 15(3): p. 86-97.
29. Gaskill, D.K., Epitaxial Graphene Growth on SiC Wafers. The Electrochemical Society, 2009. 19 (5): p. 117-124.
30. Bhaviripudi, S., et al., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters, 2010. 10(10): p. 4128-4133.
31. Yu, Q.K., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11).
32. Li, X.S., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
33. Li, X.S., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9(12): p. 4268-4272.
34. Jin, Y., et al., Roles of H-2 in annealing and growth times of graphene CVD synthesis over copper foil. Journal of Materials Chemistry A, 2014. 2(38): p. 16208-16216.
35. Kidambi, P.R., et al., The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu. Journal of Physical Chemistry C, 2012. 116(42): p. 22492-22501.
36. Liu, L.X., et al., High-Yield Chemical Vapor Deposition Growth of High-Quality Large-Area AB-Stacked Bilayer Graphene. Acs Nano, 2012. 6(9): p. 8241-8249.
37. Li, X.S., et al., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society, 2011. 133(9): p. 2816-2819.
38. Fang, W.J., et al., Asymmetric Growth of Bilayer Graphene on Copper Enclosures Using Low-Pressure Chemical Vapor Deposition. Acs Nano, 2014. 8(6): p. 6491-6499.
39. Zhao, Z.J., et al., Study on the Diffusion Mechanism of Graphene Grown on Copper Pockets. Small, 2015. 11(12): p. 1418-1422.
40. Hao, Y.F., et al., Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene (vol 11, 426, 2016). Nature Nanotechnology, 2016. 11(5).
41. Li, P., Graphene-based transparent electrodes for hybrid solar cells. Front. Mater., 2014. 1.
42. Lee, Y., et al., Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters, 2010. 10(2): p. 490-493.
43. Li, X.S., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
44. Suk, J.W., et al., Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. Acs Nano, 2011. 5(9): p. 6916-6924.
45. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-578.
46. Wang, Y., et al., Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. Acs Nano, 2011. 5(12): p. 9927-9933.
47. Wang, D.Y., et al., Clean-Lifting Transfer of Large-area Residual-Free Graphene Films. Advanced Materials, 2013. 25(32): p. 4521-4526.
48. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-710.
49. Ni, Z.H., et al., Graphene thickness determination using reflection and contrast spectroscopy. Nano Letters, 2007. 7(9): p. 2758-2763.
50. Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91(6).
51. Tang, B., G.X. Hu, and H.Y. Gao, Raman Spectroscopic Characterization of Graphene. Applied Spectroscopy Reviews, 2010. 45(5): p. 369-407.
52. Ferrari, A.C., et al., Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006. 97(18).
53. Zhou, H.L., et al., Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nature Communications, 2013. 4.
54. Yan, K., et al., Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Letters, 2011. 11(3): p. 1106-1110.
55. Li, X.M., et al., Graphene-On-Silicon Schottky Junction Solar Cells. Advanced Materials, 2010. 22(25): p. 2743-+.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69470-
dc.description.abstract隨著人類對生活品質的追求越來越高,電子產品的尺寸也急遽縮小,製作元件的材料體積也勢必需要大幅的調整。石墨烯是由碳之間以sp2鍵結的六碳環組成之二維平面材料,其優良的機械性質、電子特性,使研究學者們相當看好石墨烯的前瞻性,因此展開石墨烯的研究熱潮。取得石墨烯的方法有許多,而最一開始也最廣為人知的方法即是利用機械剝離法,然而其取得不易,且無法製造大面積之石墨烯,對於工業上的應用有限。化學氣相沉積法(CVD)便是近年來取得石墨烯的首選方法,其透過調控氣流及溫度,能夠在催化基板上成核並成長出大面積且連續的石墨烯,在經由適當的轉印方法後,我們便能將石墨烯置至基板。化學氣相沉積法不僅能夠大面積生產石墨烯,且能穩定地供應材料,這對於工業上的應用有非常大的實質幫助。
  近期雙層及多層石墨烯發展了關於光電及電化學之的應用,而其他研究團隊討論到在CVD方法下,利用銅包成長雙層石墨烯之機制,激盪我們思考氣流梯度之運用。我們將銅包之氣流梯度觀念,運用在銅片之成長,銅片除了製作過程簡易之外,我們還能控制氣流之梯度,進而得到不同多層島嶼覆蓋率之石墨烯。並且在氣流梯度的影響下,我們僅需透過一次的銅箔成長,便得以在不同表面取得相異成長結果之石墨烯。最終我們透過實驗了解到利用氣流梯度控制石墨烯在銅片上的成長機制,而碳原子的滲透為一重要關鍵。在氣流與成長時間的準確調控下,我們能長出單片島狀石墨烯,對於單片原子層材料的局部分析十分有幫助。在電化學實驗中,我們發現石墨烯的出現能夠增強催化效果,而島狀單片石墨烯影響更盛,主要歸功於其邊界催化。我們把邊界催化之觀念運用在多層島狀石墨烯上,發現催化的效果優於無邊露出之石墨烯。經由以上觀念我們便能在大面積之連續石墨烯上進行催化的優化,在工業界勢必能有相當好的展望。
zh_TW
dc.description.abstractThe life quality pursued by human is rising, and the size of electronic products needs to be rapidly minified, so the volume of materials applied in devices has to be adjusted substantially. Graphene, a two-dimensional hexagonal lattice structure composed of sp2-bonded carbon atoms, due to its outstanding mechanical and electrical properties, scientists expect the development of graphene. Among several approaches to fabricate graphene, chemical vapor deposition (CVD) is the most feasible method to synthesize high-quality graphene with large area. Moreover, CVD is a quite stable method to grow graphene, it is an essential help to apply graphene in industry.
Other groups researched the mechanism of growing bilayer graphene on Cu pockets, and promote us use the concept of gas flow gradient in graphene growth. We apply gas flow gradient to grow graphene on Cu sheets without manufacturing in pocket-structure. Based on controlling gas flow gradient in the furnace, we can grow graphene with different coverage of multilayer islands. On the other hand, with precisely control gas flow and growth time, we can synthesize single atomic graphene sheet. In electrochemistry experiment, we observe the catalytic ability is enhanced in the presence of graphene, and the effect of graphene edges on graphene islands is more significant. Similarly, we learn the catalytic ability of graphene edges on multilayer graphene islands are better than graphene without edges. With these results, we can apply continuous graphene with edges between layers in industry in order to improve the performance of catalysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:16:36Z (GMT). No. of bitstreams: 1
ntu-107-R04222040-1.pdf: 5406163 bytes, checksum: 4f02b1ecac98209325a276e90c1b87c2 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
Chapter 1 介紹 1
1.1 石墨烯之介紹 1
1.1.1 歷史發展 1
1.1.2 石墨烯的機械特性 3
1.1.3 石墨烯的化學特性 4
1.1.4 石墨烯的電性 5
1.2 石墨烯之製備 7
1.2.1 機械剝離法 7
1.2.2 化學溶液法 8
1.2.3 磊晶成長法 9
1.2.4 化學氣相沉積法 10
1.3 動機 14
Chapter 2 文獻回顧 16
2.1 氣流對於石墨烯成長之影響 16
2.2 銅箔結構對於成長之影響 19
2.3 石墨烯之轉印 23
2.3.1 傳統轉印方法 23
2.2.1 氣泡轉印方法 24
2.2.2 靜電轉印方法 25
Chapter 3 實驗方法及量測分析 26
3.1 石墨烯轉印之改良 26
3.1.1 雙重保護轉印I (Double Support Transfer-DST): PMMA+熱脫膠 26
3.1.2 雙重保護轉印I I: PMMA+PDMS 27
3.2 石墨烯品質鑑定 28
3.2.1 光學顯微鏡 28
3.2.2 拉曼光譜儀 30
3.2.3 四點探針 32
3.3 電化學量測分析 34
3.3.1 平面三極式反應器 34
3.3.2 線性掃描伏安法(Linear sweep voltammetry,LSV) 34
Chapter 4 利用氣流梯度調制銅箔之多層石墨烯成長 35
4.1 研究動機 35
4.2 銅包與銅片之石墨烯成長比較 35
4.2.1 銅包之內外表面成長差異性 35
4.2.2 銅包與銅箔之成長機制比較 36
4.2.3 銅片之內外表面成長差異性 38
4.3 銅片之氣流梯度控制 39
4.4 銅片厚度對碳原子擴散之影響 42
4.5 成長溫度對於多層石墨烯島嶼之影響 43
4.6 銅片利用氣流梯度控制之成長機制總結 44
Chapter 5 島狀石墨烯之成長以及其應用 46
5.1 單層島狀石墨烯成長控制 46
5.2 島狀單層石墨烯-蕭基接面光陰極之產氫催化效果 47
5.3 單片島狀石墨烯之電催化 48
5.3.1 島狀石墨烯之邊界催化 48
5.3.2 島狀石墨烯與白金之共觸媒催化 50
5.4 島狀多層石墨烯之邊界催化 51
Chapter 6 總結與未來展望 53
REFERENCE 54
dc.language.isozh-TW
dc.subject石墨烯zh_TW
dc.subjectCVD成長zh_TW
dc.subject層數控制zh_TW
dc.subject多層zh_TW
dc.subject氣流梯度zh_TW
dc.subjectCVD growthen
dc.subjectGrapheneen
dc.subjectGas Flow Gradienten
dc.subjectMultilayeren
dc.subjectControllable Layeren
dc.title利用氣流梯度調控之高品質石墨烯成長zh_TW
dc.titleControllable Growth of High Quality Graphene based on
the Effect of Gas Flow Gradient
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor陳俊維(Chun-Wei Chen)
dc.contributor.oralexamcommittee王偉華(Wei-Hua Wang)
dc.subject.keyword石墨烯,CVD成長,氣流梯度,多層,層數控制,zh_TW
dc.subject.keywordGraphene,CVD growth,Gas Flow Gradient,Multilayer,Controllable Layer,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201701096
dc.rights.note有償授權
dc.date.accepted2018-07-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved