請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69459
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉如熹(Ru-Shi Liu) | |
dc.contributor.author | Mu-Huai Fang | en |
dc.contributor.author | 方牧懷 | zh_TW |
dc.date.accessioned | 2021-06-17T03:16:16Z | - |
dc.date.available | 2018-08-01 | |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-04 | |
dc.identifier.citation | (1) Höppe, H. A., Recent Developments in the Field of Inorganic Phosphors. Angew. Chem. Int. Ed. 2009, 48, 3572-3582.
(2) Yeh, C. W.; Chen, W. T.; Liu, R. S.; Hu, S. F.; Sheu, H. S.; Chen, J. M.; Hintzen, H. T., Origin of Thermal Degradation of Sr2–xSi5N8:Eux Phosphors in Air for Light-emitting Diodes. J. Am. Chem. Soc. 2012, 134, 14108-14117. (3) Chen, W. T.; Sheu, H. S.; Liu, R. S.; Attfield, J. P., Cation-size-mismatch Tuning of Photoluminescence in Oxynitride Phosphors. J. Am. Chem. Soc. 2012, 134, 8022-8025. (4) Daicho, H.; Iwasaki, T.; Enomoto, K.; Sasaki, Y.; Maeno, Y.; Shinomiya, Y.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Sawa, H., A Novel Phosphor for Glareless White Light-emitting Diodes. Nat. Commun. 2012, 3, 1132. (5) Xie, R. J.; Hirosaki, N., Silicon-Based Oxynitride and Nitride Phosphors for White LEDs-A Review. Sci. Technol. Adv. Mater. 2007, 8, 588-600. (6) Vogel, S. J., Structural Changes in Agriculture: Production Linkages and Agricultural Demand-LED Industrialization. Oxf. Econ. Pap. 1994, 46, 136-156. (7) Jou, J. H.; Wang, W.-B.; Shen, S.-M.; Kumar, S.; Lai, I.-M.; Shyue, J.-J.; Lengvinaite, S.; Zostautiene, R.; Grazulevicius, J. V.; Grigalevicius, S., Highly Efficient Blue Organic Light-emitting Diode with an Oligomeric Host Having High Triplet-energy and High Electron Mobility. J. Mater. Chem. 2011, 21, 9546-9552. (8) Wei, L. L.; Lin, C. C.; Fang, M. H.; Brik, M. G.; Hu, S. F.; Jiao, H.; Liu, R. S., A Low-temperature Co-precipitation Approach to Synthesize Fluoride Phosphors K2MF6: Mn4+(M= Ge, Si) for White LED Applications. J. Mater. Chem. C 2015, 3, 1655-1660. (9) Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M., Two Linear Undecanickel Mixed‐valence Complexes: Increasing the Size and the Scope of the Electronic Properties of Nickel Metal Strings. Angew. Chem. Int. Ed. 2011, 50, 2045-2048. (10) IvyRose Ltd, 2005. (11) Blasse, G.; Bril, A., A New Phosphor for Flying‐spot Cathode‐ray Tubes for Color Television: Yellow‐emitting :Ce3+. Appl. Phys. Lett. 1967, 11, 53-55. (12) Chen, L.; Lin, C. C.; Yeh, C. W.; Liu, R. S., Light Converting Inorganic Phosphors for White Light-emitting Diodes. Materials 2010, 3, 2172-2195. (13) Kottaisamy, M.; Thiyagarajan, P.; Mishra, J.; Rao, M. R., Color Tuning of Y3Al5O12:Ce Phosphor and Their Blend for White LEDs. Mater. Res. Bull. 2008, 43, 1657-1663. (14) Höppe, H.; Lutz, H.; Morys, P.; Schnick, W.; Seilmeier, A., Luminescence in Eu2+-doped Ba2Si5N8: Fluorescence, Thermoluminescence, and Upconversion. J. Phys. Chem. Solids 2000, 61, 2001-2006. (15) Mueller‐Mach, R.; Mueller, G.; Krames, M. R.; Höppe, H. A.; Stadler, F.; Schnick, W.; Juestel, T.; Schmidt, P., Highly Efficient All‐nitride Phosphor‐converted White Light Emitting Diode. Phys. Status Solidi A 2005, 202, 1727-1732. (16) Uheda, K.; Hirosaki, N.; Yamamoto, H., Host Lattice Materials in the System Ca3N2–AlN–Si3N4 for White Light Emitting Diode. Phys. Status Solidi A 2006, 203, 2712-2717. (17) Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H., Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes. Electrochem. Solid-State Lett. 2006, 9, H22-H25. (18) Xu, Y. K.; Adachi, S., Properties of Mn4+-activated Hexafluorotitanate Phosphors. J. Electrochem. Soc. 2011, 158, J58-J65. (19) Oh, J. H.; Yang, S. J.; Do, Y. R., Healthy, Natural, Efficient and Tunable Lighting: Four-Package White LEDs for Optimizing the Circadian Effect, Color Quality and Vision Performance. Light-Sci. Appl. 2014, 3, e141. (20) Guo, X.; Houser, K. W., A Review of Colour Rendering Indices and Their Application to Commercial Light Sources. Lighting Res. Technol. 2004, 36, 183-197. (21) Smet, K.; Ryckaert, W. R.; Pointer, M. R.; Deconinck, G.; Hanselaer, P., Correlation Between Color Quality Metric Predictions and Visual Appreciation of Light Sources. Opt. Express 2011, 19, 8151-8166. (22) Houser, K. W.; Wei, M.; David, A.; Krames, M. R.; Shen, X. S., Review of Measures for Light-Source Color Rendition and Considerations for a Two-measure System for Characterizing Color Rendition. Opt. Express 2013, 21, 10393-10411. (23) David, A.; Fini, P. T.; Houser, K. W.; Ohno, Y.; Royer, M. P.; Smet, K. A.; Wei, M.; Whitehead, L., Development of the IES Method for Evaluating the Color Rendition of Light Sources. Opt. Express 2015, 23, 15888-15906. (24) de Beer, E.; van der Burgt, P.; van Kemenade, J., Another Color Rendering Metric: Do We Really Need It, Can We Live Without It? Leukos 2016, 12, 51-59. (25) Rea, M. S.; Freyssinier, J., Color Rendering: Beyond Pride and Prejudice. Color Res. Appl. 2010, 35, 401-409. (26) Wei, M.; Houser, K.; David, A.; Krames, M., Effect of Gamut Shape on Colour Preference. 2016. (27) YUJI International company, TM-30-15 Tested. (28) Oh, J. H.; Eo, Y. J.; Yoon, H. C.; Huh, Y.-D.; Do, Y. R., Evaluation of New Color Metrics: Guidelines for Developing Narrow-band Red Phosphors for WLEDs. J. Mater. Chem. C 2016, 4, 8326-8348. (29) William M. Yen, S. S. D., Hajime Yamamoto, PHOSPHOR HANDBOOK. CRC Press 2006. (30) Tessier, F.; Marchand, R., Ternary and Higher Order Rare-earth Nitride Materials: Synthesis and Characterization of Ionic-covalent Oxynitride Powders. J. Solid State Chem. 2003, 171, 143-151. (31) Jørgensen, C., The Nephelauxetic Series. Prog. Inorg. Chem. 1962, 4, 73-124. (32) Jorgensen, C., Optical Spectra and Chemical Bonding in Inorganic Compounds. Struct. Bond. 2004, 106. (33) Van Vleck, J., Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group. Phys. Rev. 1932, 41, 208. (34) Penghui, Y.; Xue, Y.; Hongling, Y.; Jiang, T.; Dacheng, Z.; Jianbei, Q., Effects of Crystal Field on Photoluminescence Properties of Ca2Al2SiO7:Eu2+ Phosphors. J. Rare Earths 2012, 30, 1208-1212. (35) Atkins, P., Shriver and Atkins' Inorganic Chemistry. Oxford University Press, USA: 2010. (36) Tanabe, Y.; Sugano, S., On the Absorption Spectra of Complex Ions. . J. Phys. Soc. Jpn. 1954, 9, 753-766. (37) Housecroft, C. E.; Sharpe, A. G., Inorganic Chemistry (2nd ed.). (38) Brik, M.; Srivastava, A., On the Optical Properties of the Mn4+ Ion in Solids. J. Lumin. 2013, 133, 69-72. (39) Nakamura, S.; Mukai, T.; Senoh, M., Candela‐class High‐brightness InGaN/AlGaN Double‐heterostructure Blue‐light‐emitting Diodes. Appl. Phys. Lett. 1994, 64, 1687-1689. (40) Nizamoglu, S.; Zengin, G.; Demir, H. V., Color-Converting Combinations of Nanocrystal Emitters for Warm-white Light Generation with High Color Rendering Index. Appl. Phys. Lett. 2008, 92, 031102. (41) Lin, C.; Zheng, Y.; Chen, H.; Ruan, C.; Xiao, G.; Liu, R. S., Improving Optical Properties of White LED Fabricated by a Blue LED Chip with Yellow/Red Phosphors. J. Electrochem. Soc. 2010, 157, H900-H903. (42) Phillips, J. M.; Coltrin, M. E.; Crawford, M. H.; Fischer, A. J.; Krames, M. R.; Mueller‐Mach, R.; Mueller, G. O.; Ohno, Y.; Rohwer, L. E.; Simmons, J. A., Research Challenges to Ultra‐efficient Inorganic Solid‐state Lighting. Laser Photon. Rev. 2007, 1, 307-333. (43) Lin, Y.-C.; Karlsson, M.; Bettinelli, M., Inorganic Phosphor Materials for Lighting. Top. Curr. Chem. 2016, 374, 21. (44) Nair, G. B.; Dhoble, S., A Perspective Perception on the Applications of Light‐emitting Diodes. Luminescence 2015, 30, 1167-1175. (45) Lin, C. C.; Liu, R. S., Advances in Phosphors for Light-emitting Diodes. J. Phys. Chem. Lett. 2011, 2, 1268-1277. (46) Lin, C. C.; Meijerink, A.; Liu, R. S., Critical Red Components for Next-generation White LEDs. J. Phys. Chem. Lett. 2016, 7, 495-503. (47) Li, G.; Tian, Y.; Zhao, Y.; Lin, J., Recent Progress in Luminescence Tuning of Ce3+ and Eu2+-Activated Phosphors for Pc-WLEDs. Chem. Soc. Rev. 2015, 44, 8688-8713. (48) Li, J.; Yan, J.; Wen, D.; Khan, W. U.; Shi, J.; Wu, M.; Su, Q.; Tanner, P. A., Advanced Red Phosphors for White Light-emitting Diodes. J. Mater. Chem. C 2016, 4, 8611-8623. (49) Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V., Emergence of Colloidal Quantum-dot Light-emitting Technologies. Nat. Photonics 2013, 7, 13-23. (50) Wang, L.; Wang, X.; Kohsei, T.; Yoshimura, K.-i.; Izumi, M.; Hirosaki, N.; Xie, R.-J., Highly Efficient Narrow-band Green and Red Phosphors Enabling Wider Color-gamut LED Backlight for More Brilliant Displays. Opt. Express 2015, 23, 28707-28717. (51) Masaoka, K.; Nishida, Y.; Sugawara, M., Designing Display Primaries with Currently Available Light Sources for Uhdtv Wide-gamut System Colorimetry. Opt. Express 2014, 22, 19069-19077. (52) Oh, J. H.; Kang, H.; Ko, M.; Do, Y. R., Analysis of Wide Color Gamut of Green/Red Bilayered Freestanding Phosphor Film-capped White LEDs for LCD Backlight. Opt. Express 2015, 23, A791-A804. (53) Fang, M. H.; Nguyen, H. D.; Lin, C. C.; Liu, R. S., Preparation of a Novel Red Rb2SiF6:Mn4+ Phosphor with High Thermal Stability through a Simple One-step Approach. J. Mater. Chem. C 2015, 3, 7277-7280. (54) Li, G.; Lin, C. C.; Chen, W. T.; Molokeev, M. S.; Atuchin, V. V.; Chiang, C. Y.; Zhou, W.; Wang, C. W.; Li, W. H.; Sheu, H. S.; Liu, R. S., Photoluminescence Tuning via Cation Substitution in Oxonitridosilicate Phosphors: DFT Calculations, Different Site Occupations, and Luminescence Mechanisms. Chem. Mater. 2014, 26, 2991-3001. (55) Oeckler, O.; Stadler, F.; Rosenthal, T.; Schnick, W., Real Structure of SrSi2O2N2. Solid State Sci. 2007, 9, 205-212. (56) Kechele, J. A.; Oeckler, O.; Stadler, F.; Schnick, W., Structure Elucidation of BaSi2O2N2–A Host Lattice for Rare-Earth Doped Luminescent Materials in Phosphor-converted (Pc)-LEDs. Solid State Sci. 2009, 11, 537-543. (57) Seibald, M.; Rosenthal, T.; Oeckler, O.; Schnick, W., Highly Efficient pc-LED Phosphors Sr1-xBaxSi2O2N2:Eu2+ -Crystal Structures and Luminescence Properties Revisited. Crit. Rev. Solid State Mater. Sci. 2014, 39, 215-229. (58) Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Henß, A.-K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W., Narrow-band Red-emitting Sr[LiAl3N4]:Eu2+ as a Next-generation LED-phosphor Material. Nat Mater 2014, 13, 891-896. (59) Pust, P.; Hintze, F.; Hecht, C.; Weiler, V.; Locher, A.; Zitnanska, D.; Harm, S.; Wiechert, D.; Schmidt, P. J.; Schnick, W., Group (III) Nitrides M[Mg2Al2N4](M= Ca, Sr, Ba, Eu) and Ba[Mg2Ga2N4] Structural Relation and Nontypical Luminescence Properties of Eu2+ Doped Samples. Chem. Mater. 2014, 26, 6113-6119. (60) Schmiechen, S.; Schneider, H.; Wagatha, P.; Hecht, C.; Schmidt, P. J.; Schnick, W., Toward New Phosphors for Application in Illumination-Grade White Pc-LEDs: the Nitridomagnesosilicates Ca[Mg3SiN4]:Ce3+, Sr[Mg3SiN4]:Eu2+, and Eu[Mg3SiN4]. Chem. Mater. 2014, 26, 2712-2719. (61) Izhevskiy, V.; Genova, L.; Bressiani, J.; Aldinger, F., Progress in SiAlON Ceramics. J. Eur. Ceram. Soc. 2000, 20, 2275-2295. (62) Kimoto, K.; Xie, R.-J.; Matsui, Y.; Ishizuka, K.; Hirosaki, N., Direct Observation of Single Dopant Atom in Light-Emitting Phosphor of β-SiAlON:Eu2+. Appl. Phys. Lett. 2009, 94, 041908. (63) Wang, Z.; Ye, W.; Chu, I.-H.; Ong, S. P., Elucidating Structure–composition–property Relationships of the β-SiAlON:Eu2+ Phosphor. Chem. Mater. 2016, 28, 8622-8630. (64) Wang, Z.; Chu, I.-H.; Zhou, F.; Ong, S. P., Electronic Structure Descriptor for the Discovery of Narrow-band Red-emitting Phosphors. Chem. Mater. 2016, 28, 4024-4031. (65) Xie, R. J.; Hirosaki, N.; Takeda, T., Highly Reliable White LEDs Using Nitride Phosphors. J. Korean Ceram. Soc. 2012, 49, 375-379. (66) Vos, J. J., Colorimetric and Photometric Properties of A 2 Fundamental Observer. Color Res. Appl. 1978, 3, 125-128. (67) Zhang, X.; Fang, M. H.; Tsai, Y. T.; Lazarowska, A.; Mahlik, S.; Lesniewski, T.; Grinberg, M.; Pang, W. K.; Pan, F.; Liang, C.; Liu, R. S., Controlling of Structural Ordering and Rigidity of β-SiAlON:Eu through Chemical Cosubstitution to Approach Narrow-Band-Emission for Light-Emitting Diodes Application. Chem. Mater. 2017. (68) Shannon, R. D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751-767. (69) Bachmann, V.; Ronda, C.; Meijerink, A., Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce. Chem. Mater. 2009, 21, 2077-2084. (70) Liu, C.; Qi, Z.; Ma, C.-G.; Dorenbos, P.; Hou, D.; Zhang, S.; Kuang, X.; Zhang, J.; Liang, H., High Light Yield of Sr8(Si4O12)Cl8:Eu2+ under X-Ray Excitation and Its Temperature-dependent Luminescence Characteristics. Chem. Mater. 2014, 26, 3709-3715. (71) Imbusch, G.; Henderson, B., Optical Spectroscopy of Inorganic Solids. In Clarendon Press, Oxford: 1989. (72) Denault, K. A.; Brgoch, J.; Gaultois, M. W.; Mikhailovsky, A.; Petry, R.; Winkler, H.; DenBaars, S. P.; Seshadri, R., Consequences of Optimal Bond Valence on Structural Rigidity and Improved Luminescence Properties in SrxBa2–xSiO4:Eu2+ Orthosilicate Phosphors. Chem. Mater. 2014, 26, 2275-2282. (73) Zhang, X.; Fang, M. H.; Tsai, Y. T.; Lazarowska, A.; Mahlik, S.; Lesniewski, T.; Grinberg, M.; Pang, W. K.; Pan, F.; Liang, C.; Liu, R. S., Controlling of Structural Ordering and Rigidity of β-SiAlON: Eu through Chemical Cosubstitution to Approach Narrow-Band-Emission for Light-Emitting Diodes Application. Chem. Mater. 2017, 29, 6781-6792. (74) Sato, Y.; Kuwahara, H.; Kato, H.; Kobayashi, M.; Masaki, T.; Kakihana, M., Large Redshifts in Emission and Excitation from Eu2+-Activated Sr2SiO4 and Ba2SiO4 Phosphors Induced by Controlling Eu2+ Occupancy on the Basis on Crystal-Site Engineering. Opt. Photo. J. 2015, 5, 326. (75) Francisco, E.; Recio, J.; Blanco, M.; Pendás, A. M.; Costales, A., Quantum-mechanical Study of Thermodynamic and Bonding Properties of MgF2. J. Phys. Chem. A 1998, 102, 1595-1601. (76) Francisco, E.; Blanco, M.; Sanjurjo, G., Atomistic Simulation of SrF2 Polymorphs. Phys. Rev. B 2001, 63, 094107. (77) Wei, M.; Houser, K.; David, A.; Krames, M., Perceptual Responses to LED Illumination with Colour Rendering Indices of 85 and 97. Lighting Res. Technol. 2015, 47, 810-827. (78) LpS 2017, LED Symposium EIPO. (79) Mini-Encyclopedia of Papermaking Wet-End Chemistry, North Carolina State University. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69459 | - |
dc.description.abstract | Manufacturing high-quality luminescent devices with low color temperature, high color rendering index and high luminous efficacy (LE) has become an urgent challenge worldwide. Phosphor materials used in light-emitting diodes (LEDs) have thus attracted much research attention. There are two important factors to tune the photoluminescence spectrum and build up high quality LED devices. First, is to discover the narrow-band emission red phosphors. The narrow-emission red component can not only increase the color rendition of the LED device but also suppress the spillover of the photons longer than 650 nm, which is insensitive to the human eye. Second, is to develop the cyan phosphor in 480–520 nm region. The cyan phosphor can improve the color vividness, decrease the color distortion, and obtain real full-spectrum lighting.
For the first section, we will focus on the Mn4+-doped fluoride phosphors and Eu2+-doped nitride phosphors. In this study, a new Rb2SiF6:Mn4+ phosphor was synthesized through a simple co-precipitation method, which can help obtain the pure phase of the fluoride phosphors. Besides, KNaSiF6:Mn4+ was synthesized via a two-step co-precipitation method. The intermediate phase of KNaSiF6:Mn4+ showed different structures and luminescent properties, especially in terms of zero-phonon line (ZPL) intensity, from K2SiF6:Mn4+ and Na2SiF6:Mn4+. This study aims to elucidate the mechanism of the ZPL intensity in AMF6:Mn4+ (A = Na, K, Cs, Ba, Rb; M = Si, Ti, and Ge). Moreover, a series of Eu2+-doped SrLiAl3N4 (SLA) phosphors are synthesized using gas pressure sintering (GPS) and hot isostatic press (HIP) systems. The results can help understand the pressure effect of the solid-state reaction. To tune the crystal structure of SLA, a series of Sr(Li1-xSix)(Al1-xMgx)3N4:Eu2+ phosphors were synthesized by HIP, which emission wavelength shifts toward longer wavelength and then shifts to a shorter wavelength. This research can not only help the researchers understand the unexpected properties during the solid-solution process but also provide an insight of the analysis methods. For the second section, a series of Sr4.7−xBaxEu0.3(PO4)3Cl cyan phosphor was synthesized by a solid-state method in the tube furnace. The structure and luminescence properties of Sr4.7−xBaxEu0.3(PO4)3Cl are examined in detail. We also propose a mechanism for the unique behavior of tuning the photoluminescence spectra. Finally, LED devices are constructed to show the practical properties of the phosphors. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:16:16Z (GMT). No. of bitstreams: 1 ntu-107-D03223117-1.pdf: 16320882 bytes, checksum: adb1cd413b9eba6253bd583a12f19046 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Contents III
Figure contents VII Table contents XVI Abbreviation XVII Basic Information of Phosphors XVIII Chapter 1. Introduction 1 1.1 Light 1 1.1.1 History of LED 2 1.1.2 Human vision and luminous efficacy of radiation 4 1.1.3 Color rendering index 7 1.1.4 TM-30-15 color system 8 1.2 Inorganic Phosphor Materials 13 1.2.1 Host lattice and activator 14 1.2.2 Nephelauxetic effect and crystal field splitting 16 1.2.3 Thermal stability 18 1.3 High Color Rendition Mn4+-doped Fluoride Phosphor 21 1.3.1 Selection rule 21 1.3.2 Tanabe-Sugano diagram 22 1.3.3 Emission and excitation spectrum of fluoride phosphors 24 1.4 High Color Rendition Eu2+-doped Narrow-band Nitride Phosphor 28 1.4.1 Crystal structure: arrangement and channels 31 1.4.2 First shell effect 37 1.4.3 Second shell effect 41 1.4.4 Rigidity and electron-lattice interaction 42 1.5 High Color Rendition Eu2+-doped Full Spectrum Cyan Phosphor 51 1.5.1 Cyan gap 52 1.5.2 UV-pumped full spectrum lighting 53 1.5.3 Precision of white color 55 1.6 Objectives and Research Motivation 57 1.7 References (Chapter 1) 62 Chapter 2. Experimental Approaches and Techniques 72 2.1 Chemicals and Materials 73 2.2 Synthesis of Phosphors 75 2.2.1 Fabrication of Mn4+-doped fluoride phosphors 75 2.2.2 Fabrication of SrLiAl3N4:Eu2+ nitride phosphors 76 2.2.3 Fabrication of Sr(Li1-xSix)(Al1-xMgx)3N4:Eu2+ nitride phosphors 78 2.2.4 Fabrication of Sr4.7-xBaxEu0.3(PO4)3Cl oxide phosphors 78 2.3 Instruments for Characterization 79 2.3.1 X-ray diffraction 79 2.3.2 Photoluminescence 84 2.3.3 Temperature-dependent photoluminescence 85 2.3.4 Pressure-dependent photoluminescence 87 2.3.5 Quantum efficiency 90 2.3.6 Solid-state nuclear magnetic resonance 92 2.3.7 Scanning electron microscopy 94 2.3.8 X-ray absorption near-edge structure 96 2.3.9 LED package 100 2.4 References (Chapter 2) 103 Chapter 3. Preparation of a Novel Red Rb2SiF6:Mn4+ Phosphor with High Thermal Stability through a Simple One-step Approach 105 3.1 Introduction 105 3.2 Experimental Section 107 3.3 Results and Discussion 107 3.4 Summary 114 3.5 References (Chapter 3) 115 Chapter 4. Narrow Red Emission Band Fluoride Phosphor KNaSiF6:Mn4+ for Warm White Light-Emitting Diodes 119 4.1 Introduction 119 4.2 Experimental Section 121 4.3 Results and Discussion 121 4.4 Summary 146 4.5 References (Chapter 4) 147 Chapter 5. Pressure-controlled Synthesis of High-performance SrLiAl3N4:Eu2+ Narrow-band Red Phosphors 151 5.1 Introduction 151 5.2 Experimental Section 152 5.3 Results and Discussion 153 5.4 Summary 166 5.5 References (Chapter 5) 167 Chapter 6. Enhance Color Rendering Index via Full Spectrum Employing the Important Key of Cyan Phosphor 172 6.1 Introduction 172 6.2 Experimental Section 173 6.3 Results and Discussion 173 6.4 Summary 188 6.5 References (Chapter 6) 189 Chapter 7. Solid-solution Controlled Sr(Li1-xSix)(Al1-xMgx)3N4:Eu2+ Red Phosphor with Extraordinary Wide-range Tunable Photoluminescence Spectra 192 7.1 Introduction 192 7.2 Experimental Section 193 7.3 Results and Discussion 193 7.4 Summary 211 7.5 References (Chapter 7) 212 Chapter 8. Concluding Remarks 214 8.1 Conclusions 214 Publications in International Scientific Journals 218 Patents 221 | |
dc.language.iso | en | |
dc.title | 高演色性螢光粉調控及其於發光二極體之應用 | zh_TW |
dc.title | Control of High Color Rendition Phosphors and Their Application in White Light-Emitting Diodes | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 周必泰(Pi-Ta Chou),廖秋峰,汪建民,陳錦明,彭維鋒 | |
dc.subject.keyword | 螢光粉,發光二極體, | zh_TW |
dc.subject.keyword | Phosphor,Light-Emitting Diodes, | en |
dc.relation.page | 221 | |
dc.identifier.doi | 10.6342/NTU201800981 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 15.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。