請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69449完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 章良渭(Liang-Wey Chang) | |
| dc.contributor.author | Tzu-Yu Lin | en |
| dc.contributor.author | 林孜伃 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:16:00Z | - |
| dc.date.available | 2018-07-19 | |
| dc.date.copyright | 2018-07-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-04 | |
| dc.identifier.citation | 1. Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RCh, Tegenthoff M, et al. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014 Dec 1;14(12):2847-53.
2. Arazpour M, Bani MA, Hutchins SW. Reciprocal gait orthoses and powered gait orthoses for walking by spinal cord injury patients. Prosthet Orthot Int. 2013 Feb;37(1):14-21. 3. Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, Frotzler A, Ribeill C, Kalke YB. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018 Feb;56(2):106-116. 4. Berg Balance Scale. Retrieved Jan 1, 2016 from Retrieved Jan 1, 2016 from the World Wide Web: http://www.aahf.info/pdf/Berg_Balance_Scale.pdf. 5. Bernardi M, Canale I, Castellano V, Di Filippo L, Felici F and Marchetti M. The efficiency of walking of paraplegic patients using a reciprocating gait orthosis. Paraplegia 1995; 33(7): 409–15. 6. Biering-Sørensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest. 1990 Jun;20(3):330-5. 7. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81. 8. Chen B, Ma H, Qin LY, Gao F, Chan KM, Law SW, et al. Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation 2016; 5: 26-37. 9. Daines K, Lemaire ED, Smith A, Herbert-Copley A. Sit-to-Stand and Stand-to-Sit Crutch use for Lower Extremity Powered Exoskeletons. 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS2017) 5-7 Oct. 2017. 10. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006 Feb 28; 66(4): 484–493. 11. Dubost V, Kressig RW, Gonthier R, Herrmann FR, Aminian K, Najafi B, et al. Relationships between dual-task related changes in stride velocity and stride time variability in healthy older adults. Hum Mov Sci. 2006 Jun; 25(3):372-82. 12. Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury. Am J Phys Med Rehabil 2012; 91:911-21. 13. Fariba B, Robert R, Parviz J-M, Gunther S. Biomechanical analysis of sit-to-stand transfer in healthy and paraplegic subjects. Clinical Biomechanics. 2000; 15 : 123-133 14. Farris RJ, Quintero HA, Murray SA, Ha KH, Hartigan C, Goldfarb M. A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):482-90. 15. Ferris DP, Sawicki GS and Daley MA. A physiologist’s perspective on robotic exoskeletons for human locomotion. Int J HR 2007; 4(3): 507–28. 16. Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil 2001; 82: 818–824. 17. Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking velocity and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther 2011;91(1):48–60. 18. Forrest GF, Hutchinson K, Lorenz DJ, Buehner JJ, VanHiel LR, Sisto SA, et al. Are the 10 Meter and 6 Minute Walk Tests Redundant in Patients with Spinal Cord Injury? PLoS One. 2014; 9(5): e94108. 19. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008 Jul;22(7-8):625-32. 20. Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, et al. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Top Spinal Cord Inj Rehabil. 2015 Spring;21(2):93-9. 21. Hicks AL, Adams MM, Martin Ginis K, Giangregorio L, Latimer A, Phillips SM, et al. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord. 2005 May;43(5):291-8. 22. Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005 Jan;85(1):52-66. 23. Hwang S, Kim HR, Han ZA, Lee BS, Kim SJ, Shin HS, et al. Improved Gait Speed After Robot-Assisted Gait Training in Patients With Motor Incomplete Spinal Cord Injury: A Preliminary Study. Ann Rehabil Med. 2017 Feb; 41(1): 34–41. 24. International Standards for Neurological Classification of SCI (ISNCSCI) Exam. Retrieved Jan 1, 2016 from American Spinal Injury Association Learning Center on the World Wide Web: http://www.asia-spinalinjury.org/elearning/ISNCSCI.php. 25. Jovic J, Fraisse P, Coste CA, Bonnet V, Fattal C. Improving valid and deficient body segment coordination to improve FES assisted sit-to-stand in paraplegic subjects. IEEE Int Conf Rehabil Robot. 2011; 2011:5975369. 26. Karimi MT. Evidence-Based Evaluation of Physiological Effects of Standing and Walking in Individuals with Spinal Cord Injury. Iran J Med Sci. 2011 Dec; 36(4): 242–253. 27. Kobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC, Gaudio R, et al. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J Rehabil Res Dev 2009; 46(3): 447–62. 28. Kolakowsky-Hayner S A, Crew J, Moran S and Shah A. Safety and feasibility of using the Ekso™ bionic exoskeleton to aid ambulation after spinal cord injury. J. Spine 2013; S4: 003. 29. Kozlowski A, Bryce T and Dijkers M. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top. Spinal Cord Injury Rehabil 2015; 21: 110–21. 30. Kubota S, Abe T, Kadone H, Fujii K, Shimizu Y, Marushima A, et al. Improved Gait Speed After Robot-Assisted Gait Training in Patients With Motor Incomplete Spinal Cord Injury: A Preliminary Study. Ann Rehabil Med. 2017 Feb; 41(1): 34–41. 31. Lam T, Noonan VK, Eng JJ. A systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord. 2008;46:246–54. 32. Leung A, Wong A, Wong E and Hutchins S. The physiological cost index of walking with an isocentric reciprocating gait orthosis among patients with T 12–L 1 spinal cord injury. Prosthet Orthot Int 2009; 33(1): 61–8. 33. Lin YC. User Controlled Enhanced Reciprocating Gait Orthoses for Paraplegia Patients (UPGO) control algorithm comparison – Button Control vs Postural Control. National Taiwan University Master Thesis 2016. 34. Massucci M, Brunetti G, Piperno R, Betti L and Franceschini M. Walking with the advanced reciprocating gait orthosis (ARGO) in thoracic paraplegic patients: energy expenditure and cardiorespiratory performance. Spinal Cord 1998; 36(4): 223–7. 35. Michael S O, Ava D S, Glenn K K, Jocelyn S B, Eric S R, Nancy J K. The Effect of Walking velocity on Center of Mass Displacement. Journal of Rehabilitation Research & Development 2004; 41: 829–34 36. Modified Ashworth Scale. Retrieved Jan 1, 2016 from Retrieved Jan 1, 2016 from the World Wide Web: http://www.health.utah.edu/occupational-therapy/files/evalreviews/mas.pdf. 37. Moghimian M, Kashani F, Cheraghi MA, Mohammadnejad E. Quality of life and related factors among people with spinal cord injuries in tehran, Iran. Arch Trauma Res. 2015;4:e19280. 38. Nadeau S, Duclos C, Bouyer L, Richards CL. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. Prog Brain Res. 2011;192:161-80. 39. Nam KY, Kim HJ, Kwon BS, Park JW, Lee HJ, Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017 Mar 23;14(1):24. 40. Ning GZ, Wu Q, Li YL, Feng SQ. Epidemiology of traumatic spinal cord injury in Asia: A systematic review. J Spinal Cord Med. 2012 Jul; 35(4): 229–239. 41. Noreau L, Proulx P, Gagnon L, Drolet M, Laramée MT. Secondary impairments after spinal cord injury: a population-based study. Am J Phys Med Rehabil. 2000 Nov-Dec;79(6):526-35. 42. Phillips WT, Kiratli BJ, Sarkarati M, Weraarchakul G, Myers J, Franklin BA, et al. Effect of spinal cord injury on the heart and cardiovascular fitness. Curr Probl Cardiol. 1998 Nov;23(11):641-716. 43. Sabo D, Blaich S, Wenz W, Hohmann M, Loew M. Osteoporosis in patients with paralysis after spinal cord injury A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg 2001; 121 :75–78. 44. Saitoh E, Suzuki T, Sonoda S, Fujitani J, Tomita Y, Chino N. Clinical Experience With A New Hip-Knee-Ankle-Foot Orthotic System Using A Medial Single Hip Joint For Paraplegic Standing And Walking. Am J Phys Med Rehabil. 1996;75(3):198-203. 45. Sankai Y. HAL: Hybrid Assistive Limb based on Cybernics. Springer Tracts in Advanced Robotics. January 2007. 46. Schenkman M, Berger R, Riley P O, Mann R W, and Hodge W A. Whole-Body Movements During Rising to Standing From Sitting. Phys Ther, 70(10) : 638–648. 47. Skelton J, Wu SK, Shen XR. Design of a Powered Lower-Extremity Orthosis for Sit-to-Stand and Ambulation Assistance. Journal of Medical Devices 2013; 7(3):030910. 48. Spooren AI, Janssen-Potten YJ, Kerckhofs E, Bongers HM, Seelen HA. ToCUEST: a task-oriented client-centered training module to improve upper extremity skilled performance in cervical spinal cord-injured persons. Spinal Cord. 2011 Oct;49(10):1042-8. 49. Spring A, Kofman J, and Lemaire E. Knee-Extension-Assist for Knee-Ankle-Foot Orthoses. 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011 50. Tsukahara A, Kawanishi R, Hasegawa Y and Sankai Y. Sit-to-Stand and Stand-to-Sit Transfer Support for Complete Paraplegic Patients with Robot Suit HAL. Advanced Robotics, 2010: 1615–38. 51. Welage N, Liu K. Wheelchair accessibility of public buildings: A review of the literature. Disabil Rehabil Assist Technol 2011;6:1-9. 52. Wernig A, Nanassy A, Muller S. Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies. Spinal Cord 1998; 36: 744–749. 53. Westie KS. Psychological Aspects of Spinal Cord Injury. Clinical Prosthetics & Orthotics 1987; 11 (4): 225 – 229 54. Wirz M, Colombo G, Dietz V. Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psychiatry 2001; 71: 93–96. 55. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005 Apr;86(4):672-80. 56. Yang NP, Deng CY, Lee YH, Lin CH, Kao CH, Chou P. The incidence and characterisation of hospitalised acute spinal trauma in Taiwan-a population-based study. Injury. 2008 Apr;39(4):443-50. 57. Yang WC, Hsu WL, Wu CH, Hu JS, Mao HF, Tang PF. A Short-term Gait Training Protocol for Using the Powered Exoskeleton in People with Spinal Cord Injury: Preliminary Report. FJPT 2013;38(4):252-263. 58. Yang WH. A User-intent Powered Gait Orthosis with Speed Control Developed for Persons with Disability. National Taiwan University Master Thesis 2018. 59. Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med. 2012 Mar;35(2):96-101. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69449 | - |
| dc.description.abstract | 背景:脊髓損傷是造成下肢癱瘓主要的原因之一,隨著醫療科技與健康照護的進步,脊髓損傷個案的壽命也跟著延長,然而因後遺症的問題,這樣個案的生活品質下降不少,動力步行矯具(Powered Gait Orthosis,又稱Exoskeleton、外骨骼 )在1970年代被發展出來,目的以馬達動力協助大關節去完成跨步動作,以提升個案的行走功能,近期的電動步行矯具發展著重於:有效率的能量使用、輕量、實惠的價格。第二代患者自控式電動步行矯具(User-controlled Powered Gait Orthosis Second Edition,簡稱UPGO II)以一對髖關節馬達作為驅動力,搭配站立控制膝關節(Stance-controlled knee)、長腿支架……等機構設計,欲以馬達減量的方式去減輕整體重量,讓馬達的使用作最有效率的運用,並同時達到價格控制的目的,欲成為一個具有足夠功能且有效率的電動步行矯具。本文中將UPGO II運用在慢性脊髓損傷個案的任務導向行走訓練上,欲觀察使用UPGO II進行行走訓練過後,個案在行走功能上所有的改變。
方法:一名可以使用前臂拐行走的57歲慢性脊髓損傷個案,穿著UPGO II進行12次的任務導向行走訓練,在第6次的訓練過後以及第12次的訓練過後執行10公尺行走測試,並在訓練全部結束過後完成伯格氏平衡量表與肌力再評量。 結果:6次的訓練過後,使用前臂拐的行走速度增加、HRR比例下降、RPE分數下降,甚至能改以平衡難度更高的兩支單拐作為行走輔具輔助行走。完成12次訓練過後,個案使用前臂拐的行走速度從0.292 m/s增加至0.503 m/s,能用兩支單拐進行行走,甚至能嘗試使用單拐完成10公尺的行走,伯格氏平衡量表分數從27分進步至31分,左腳肌力有些微提升。 結論:12次任務導向行走訓練結合UPGO II 改善了個案的行走速度、平衡、肌力以及行走功能,也許UPGO II對於治療師來說會是個協助執行訓練的新利器,而且也許任務導向行走訓練結合UPGO II 對於那些原先就具有平地行走功能、但平衡能力尚不足的慢性不完全脊髓損傷個案來說會是個新的訓練方式,然而仍需要更多的研究來證實。 | zh_TW |
| dc.description.abstract | BACKGROUND: Powered gait orthoses (PGOs), or called exoskeletons, were initially developed in the 1970s. Powered gait orthoses make use of some actuators positioned adjacent to the anatomical hips, knees or ankles for the SCI patients to walk more efficiently. User-Intent Powered Gait Orthosis II (UPGO II) is a powered gait orthosis which uses stance-controlled knee-ankle-foot orthoses to replace knee and ankle powers, and only 2 actuators on the hips. The purpose was to observe the effect on walking function of a person with the chronic SCI after task-oriented gait training with UPGO II.
METHODS: A 57-year-old male with chronic spinal cord injury who could walk with forearm crutches and canes but no need of UPGO was involved in the study. The subject had a 12-session task-oriented gait training with UPGO II. 10-meter walking tests were tested after 6th-session and 12th-session. The Berg Balance Scale manual muscle test was re-tested after 12-session training. RESULTS: The walking velocity, HRR% and RPE scores of walking with forearm crutches improved after 6 sessions of training. The participant even can walk with walking aids which are more difficult to maintain balance than using forearm crutches. After 12 sessions of training, walking velocity improved from 0.292 m/s to 0.503 m/s, and Berg Balance Scale improved from 27 scores to 31 scores. He can walk with 2 canes and even try to finish a 10-meter walking with a cane after 12 sessions of training. Furthermore, slight improvement in muscle power was found on left lower extremity. No adverse events occurred during the case study. CONCLUSION: 12 sessions of task-oriented walking training with UPGO II improves the participant’s walking velocity, balance, walking function and muscle power. UPGO II may be a new option for helping therapists to carry out their program. Task-oriented walking training combined with UPGO II may be another new training method for chronic incomplete SCI patients who are able to walk on level-ground with aids, but poor at balance. However, the further researches are required in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:16:00Z (GMT). No. of bitstreams: 1 ntu-107-R04548026-1.pdf: 3585737 bytes, checksum: 2ce48a8dfb11937a3b0a16398866dd3e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝…………………………………………………………………………………..…..i
Chinese Abstract ………………………………………………………………………..ii English Abstract…………………………………………………………………………iv List of figures…………………………………………………………………………….1 List of tables……………………………………………………………………………...2 Chapter 1. Introduction……………………………...……………………..…………….3 1.1 Literature Review………………….........……………………..……………….19 1.2 Case Preliminary Report………………….....………..……………………..….22 1.3 Purpose……………………………...………..………………..……………….26 1.4 Hypothesis……………………………...………..………………..…………....26 Chapter 2. Methods……………………………...……………………..……………....26 2.1 Before the Research .………………………………...……………………..…....26 2.2 Training Procedure ..…………………………………...……………..…………28 2.3 Experiment Procedure ..………………………………...……………………….32 2.4 Equipment and Materials……………………..…………………………………32 Chapter 3. Result……………………................……………………..……………......34 Chapter 4. Discussion………………………………………………………………….43 Chapter 5. Conclusion……………………………………………………………...….45 References……………….………..…………………………………………………....46 Appendix……………………….………………………………………………………54 A. Approval of the Taiwan FDA………………………………….………………..54 B.1 Walking Index for Spinal Cord Injury (WISCI II) …….………………………..55 B.2 Berg Balance Scale………………………………...……………………………57 B.3 Borg Rating of Perceived Exertion Scale (RPE)…………………………...…...63 B.4 International Standards for Neurological Classification of SCI (ISNCSCI)...….63 B.5 Modified Ashworth Scale………………………………...……………………..64 C. Informed Consent Form…………………………………………………………..65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 下肢動力外骨骼、慢性脊髓損傷、行走訓練、平衡、行走速度、任務導向訓練 | zh_TW |
| dc.subject | walking velocity | en |
| dc.subject | Powered gait orthosis | en |
| dc.subject | chronic spinal cord injury | en |
| dc.subject | gait training | en |
| dc.subject | balance | en |
| dc.subject | task-oriented training | en |
| dc.title | 使用第二代自控式電動步行矯具進行任務導向行走訓練對於慢性不完全脊髓損傷患者平衡與行走功能的影響:個案研究 | zh_TW |
| dc.title | Effect of Task-Oriented Gait Training with User-Intent Powered Gait Orthosis II (UPGO II) on Balance and Walking Function in a Person with Chronic Incomplete Spinal Cord Injury: Case Report | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏大森(Ta-Sen Wei),韓德生(Der-Sheng Han) | |
| dc.subject.keyword | 下肢動力外骨骼、慢性脊髓損傷、行走訓練、平衡、行走速度、任務導向訓練, | zh_TW |
| dc.subject.keyword | Powered gait orthosis, chronic spinal cord injury, gait training, balance, walking velocity, task-oriented training, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU201801310 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
