Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐治平(Jyh-Ping Hsu)
dc.contributor.authorChih-Yuan Linen
dc.contributor.author林志原zh_TW
dc.date.accessioned2021-06-17T03:15:59Z-
dc.date.available2023-07-06
dc.date.copyright2018-07-06
dc.date.issued2018
dc.date.submitted2018-07-05
dc.identifier.citationChapter 1
1. Schoch, R. B.; Han, J. Y.; Renaud, P., Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839-883.
2. Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197-200.
3. Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455-458.
4. Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J., Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297-301.
5. Lee, J.; Laoui, T.; Karnik, R., Nanofluidic transport governed by the liquid/vapour interface. Nat. Nanotechnol. 2014, 9, 317-323.
6. Heiranian, M.; Farimani, A. B.; Aluru, N. R., Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 2015, 6, 8616.
7. Dekker, C., Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209-215.
8. Karnik, R.; Castelino, K.; Duan, C. H.; Majumdar, A., Diffusion-limited patterning of molecules in nanofluidic channels. Nano Lett. 2006, 6, 1735-1740.
9. Picallo, C. B.; Gravelle, S.; Joly, L.; Charlaix, E.; Bocquet, L., Nanofluidic Osmotic Diodes: Theory and Molecular Dynamics Simulations. Phys. Rev. Lett. 2013, 111, 244501.
10. Kim, S. J.; Wang, Y. C.; Lee, J. H.; Jang, H.; Han, J., Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 2007, 99, 044501.
11. Wei, R. S.; Gatterdam, V.; Wieneke, R.; Tampe, R.; Rant, U., Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 2012, 7, 257-263.
12. Venkatesan, B. M.; Bashir, R., Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615-624.
13. Esfandiar, A.; Radha, B.; Wang, F. C.; Yang, Q.; Hu, S.; Garaj, S.; Nair, R. R.; Geim, A. K.; Gopinadhan, K., Size effect In Ion transport through angstrom-scale silts. Science 2017, 358, 511-513.
14. Guan, W. H.; Fan, R.; Reed, M. A., Field-effect reconfigurable nanofluidic ionic diodes. Nat. Commun. 2011, 2, 506.
15. Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T., Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713-720.
16. Hunter, R. J., Foundations of colloid science. 2nd ed.; Oxford University Press: Oxford ; New York, 2001; p xii, 806 p.
17. Masliyah, J. H., Electrokinetic transport phenomena. Alberta Oil Sands Technology and Research Authority: Edmonton, Alta., 1994; p xiv, 363 p.
18. Kirby, B., Micro- and nanoscale fluid mechanics : transport in microfluidic devices. Cambridge University Press: Cambridge ; New York, 2010; p xxii, 512 p.
19. Haywood, D. G.; Harms, Z. D.; Jacobson, S. C., Electroosmotic Flow in Nanofluidic Channels. Anal. Chem. 2014, 86, 11174-11180.
20. Rice, C. L.; Whitehead, R., Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys. Chem. 1965, 69, 4017-4024.
21. Burgreen, D.; Nakache, F. R., Electrokinetic Flow in Ultrafine Capillary Slits. J. Phys. Chem. 1964, 68, 1084-1091.
22. Hughes, C.; Yeh, L. H.; Qian, S. Z., Field Effect Modulation of Surface Charge Property and Electroosmotic Flow in a Nanochannel: Stern Layer Effect. J. Phys. Chem. C 2013, 117, 9322-9331.
23. Levine, S.; Marriott, J. R.; Robinson, K., Theory of electrokinetic flow in a narrow parallel-plate channel. J Chem. Soc. Faraday Trans. 2 1975, 71, 1-11.
24. Debye, P.; Bueche, A. M., Intrinsic Viscosity, Diffusion, and Sedimentation Rate of Polymers in Solution. J. Chem. Phys. 1948, 16, 573-579.
25. Overbeek, J. T. G.; Stigter, D., Electrophoresis of Polyelectrolytes with Partial Drainage. Recl. Trav. Chim. Pays-Bas 1956, 75, 543-554.
26. Hermans, J. J., Sedimentation and Electrophoresis of Porous Spheres. J. Polym. Sci. 1955, 18, 527-534.
27. Imai, N.; Iwasa, K., Theory of Electrophoresis of Polyelectrolytes. Isr. J. Chem. 1973, 11, 223-233.
28. Ohshima, H., Electrophoresis of soft particles. Adv. Colloid Interface Sci. 1995, 62, 189-235.
29. Tseng, S.; Lin, C. Y.; Hsu, J. P.; Yeh, L. H., Electrophoresis of Deformable Polyelectrolytes in a Nanofluidic Channel. Langmuir 2013, 29, 2446-2454.
30. Hsu, J. P.; Lin, C. Y.; Yeh, L. H.; Lin, S. H., Influence of the shape of a polyelectrolyte on its electrophoretic behavior. Soft Matter 2012, 8, 9469-9479.
31. Duval, J. F. L.; Gaboriaud, F., Progress in electrohydrodynamics of soft microbial particle interphases. Curr. Opin. Colloid Interface Sci. 2010, 15, 184-195.
32. Duval, J. F. L.; Wilkinson, K. J.; Van Leeuwen, H. P.; Buffle, J., Humic substances are soft and permeable: Evidence from their electrophoretic mobilities. Environ. Sci. Technol. 2005, 39, 6435-6445.
33. Stein, D.; Kruithof, M.; Dekker, C., Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93, 035901.
34. Schoch, R. B.; Renaud, P., Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett. 2005, 86, 253111.
35. Frament, C. M.; Dwyer, J. R., Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits. J. Phys. Chem. C 2012, 116, 23315-23321.
36. Steinbock, L. J.; Lucas, A.; Otto, O.; Keyser, U. F., Voltage-driven transport of ions and DNA through nanocapillaries. Electrophoresis 2012, 33, 3480-3487.
37. Daiguji, H., Ion transport in nanofluidic channels. Chem. Soc. Rev. 2010, 39, 901-911.
38. Pud, S.; Chao, S. H.; Belkin, M.; Verschueren, D.; Huijben, T.; van Engelenburg, C.; Dekker, C.; Aksimentiev, A., Mechanical Trapping of DNA in a Double-Nanopore System. Nano Lett. 2016, 16, 8021-8028.
39. Cruz-Chu, E. R.; Aksimentiev, A.; Schulten, K., Ionic Current Rectification through Silica Nanopores. J. Phys. Chem. C 2009, 113, 1850-1862.
40. Roux, B., Theoretical and computational models of ion channels. Curr Opin Struc Biol 2002, 12, 182-189.
41. Maffeo, C.; Bhattacharya, S.; Yoo, J.; Wells, D.; Aksimentiev, A., Modeling and Simulation of Ion Channels. Chem. Rev. 2012, 112, 6250-6284.
42. Hall, A. R.; Scott, A.; Rotem, D.; Mehta, K. K.; Bayley, H.; Dekker, C., Hybrid pore formation by directed insertion of alpha-haemolysin into solid-state nanopores. Nat. Nanotechnol. 2010, 5, 874-877.
43. Clarke, J.; Wu, H. C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H., Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 2009, 4, 265-270.
44. Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H., Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci. USA 2008, 105, 20647-20652.
45. Heiranian, M.; Farimani, A. B.; Aluru, N. R., Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 2015, 6.
46. Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V.; Carbone, P.; Geim, A. K.; Nair, R. R., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546-550.
47. Rollings, R. C.; Kuan, A. T.; Golovchenko, J. A., Ion selectivity of graphene nanopores. Nat. Commun. 2016, 7, 11408.
48. Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A., Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190-193.
49. Xiao, K.; Wen, L. P.; Jiang, L., Biomimetic Solid-State Nanochannels: From Fundamental Research to Practical Applications. Small 2016, 12, 2810-2831.
50. Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C., Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Anal. Chem. 2015, 87, 172-187.
51. Zhang, H. C.; Tian, Y.; Jiang, L., Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today 2016, 11, 61-81.
52. Wolf, A.; Reber, N.; Apel, P. Y.; Fischer, B. E.; Spohr, R., Electrolyte transport in charged single ion track capillaries. Nucl Instrum Meth B 1995, 105, 291-293.
53. Siwy, Z.; Gu, Y.; Spohr, H. A.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y. E., Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys. Lett. 2002, 60, 349-355.
54. Liu, M. Y.; Zhang, H. C.; Li, K.; Heng, L. P.; Wang, S. T.; Tian, Y.; Jiang, L., A Bio-inspired Potassium and pH Responsive Double-gated Nanochannel. Adv. Funct. Mater. 2015, 25, 421-426.
55. Li, C. Y.; Ma, F. X.; Wu, Z. Q.; Gao, H. L.; Shao, W. T.; Wang, K.; Xia, X. H., Solution-pH-Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions. Adv. Funct. Mater. 2013, 23, 3836-3844.
56. Vlassiouk, I.; Siwy, Z. S., Nanofluidic diode. Nano Lett. 2007, 7, 552-556.
57. Pevarnik, M.; Healy, K.; Davenport, M.; Yen, J.; Siwy, Z. S., A hydrophobic entrance enhances ion current rectification and induces dewetting in asymmetric nanopores. Analyst 2012, 137, 2944-2950.
58. Zhang, H.; Hou, X.; Zeng, L.; Yang, F.; Li, L.; Yan, D.; Tian, Y.; Jiang, L., Bioinspired artificial single ion pump. J. Am. Chem. Soc. 2013, 135, 16102-10.
59. Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L., A pH-Gating Ionic Transport Nanodevice: Asymmetric Chemical Modification of Single Nanochannels. Adv. Mater. 2010, 22, 2440-2443.
60. Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L., Fabrication of Stable Single Nanochannels with Controllable Ionic Rectification. Small 2010, 6, 361-365.
61. Nasir, S.; Ali, M.; Ramirez, P.; Gomez, V.; Oschmann, B.; Muench, F.; Tahir, M. N.; Zentel, R.; Mafe, S.; Ensinger, W., Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS Appl. Mater. Inter. 2014, 6, 12486-12494.
62. White, H. S.; Bund, A., Ion current rectification at nanopores in glass membranes. Langmuir 2008, 24, 2212-2218.
63. Daiguji, H.; Oka, Y.; Shirono, K., Nanofluidic diode and bipolar transistor. Nano Lett. 2005, 5, 2274-2280.
64. Cheng, L. J.; Guo, L. J., Ionic Current Rectification, Breakdown, and Switching in Heterogeneous Oxide Nanofluidic Devices. ACS Nano 2009, 3, 575-584.
65. Zhang, Z.; Kong, X. Y.; Xiao, K.; Xie, G. H.; Liu, Q.; Tian, Y.; Zhang, H. C.; Ma, J.; Wen, L. P.; Jiang, L., A Bioinspired Multifunctional Heterogeneous Membrane with Ultrahigh Ionic Rectification and Highly Efficient Selective Ionic Gating. Adv. Mater. 2016, 28, 144-150.
66. Yang, C.; Hinkle, P.; Menestrina, J.; Vlassiouk, I. V.; Siwy, Z. S., Polarization of Gold in Nanopores Leads to Ion Current Rectification. J. Phys. Chem. Lett. 2016, 7, 4152-4158.
67. Tseng, S. J.; Lin, S. C.; Lin, C. Y.; Hsu, J. P., Influences of Cone Angle and Surface Charge Density on the Ion Current Rectification Behavior of a Conical Nanopore. J. Phys. Chem. C 2016, 120, 25620-25627.
68. Kovarik, M. L.; Zhou, K. M.; Jacobson, S. C., Effect of Conical Nanopore Diameter on Ion Current Rectification. J. Phys. Chem. B 2009, 113, 15960-15966.
69. Zhang, H. C.; Tian, Y.; Hou, J.; Hou, X.; Hou, G. L.; Ou, R. W.; Wang, H. T.; Jiang, L., Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation. ACS Nano 2015, 9, 12264-12273.
70. Wen, L. P.; Xiao, K.; Sainath, A. V. S.; Komura, M.; Kong, X. Y.; Xie, G. H.; Zhang, Z.; Tian, Y.; Iyoda, T.; Jiang, L., Engineered Asymmetric Composite Membranes with Rectifying Properties. Adv. Mater. 2016, 28, 757-763.
71. Han, K. Y.; Heng, L. P.; Wen, L. P.; Jiang, L., Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures. Nanoscale 2016, 8, 12318-12323.
72. Hsu, J. P.; Wu, H. H.; Lin, C. Y.; Tseng, S., Ion Current Rectification Behavior of Bioinspired Nanopores Having a pH-Tunable Zwitterionic Surface. Anal. Chem. 2017, 89, 3952-3958.
73. Plett, T.; Shi, W. Q.; Zeng, Y. H.; Mann, W.; Vlassiouk, I.; Baker, L. A.; Siwy, Z. S., Rectification of nanopores in aprotic solvents - transport properties of nanopores with surface dipoles. Nanoscale 2015, 7, 19080-19091.
74. Yin, X. H.; Zhang, S. D.; Dong, Y. T.; Liu, S. J.; Gu, J.; Chen, Y.; Zhang, X.; Zhang, X. H.; Shao, Y. H., Ionic Current Rectification in Organic Solutions with Quartz Nanopipettes. Anal. Chem. 2015, 87, 9070-9077.
75. Gamble, T.; Decker, K.; Plett, T. S.; Pevarnik, M.; Pietschmann, J. F.; Vlassiouk, I.; Aksimentiev, A.; Siwy, Z. S., Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling. J. Phys. Chem. C 2014, 118, 9809-9819.
76. Hsu, J. P.; Yang, S. T.; Lin, C. Y.; Tseng, S., Ionic Current Rectification in a Conical Nanopore: Influences of Electroosmotic Flow and Type of Salt. J. Phys. Chem. C 2017, 121, 4576-4582.
77. Zhang, Z.; Xie, G. H.; Xiao, K.; Kong, X. Y.; Li, P.; Tian, Y.; Wen, L. P.; Jiang, L., Asymmetric Multifunctional Heterogeneous Membranes for pH- and Temperature-Cooperative Smart Ion Transport Modulation. Adv. Mater. 2016, 28, 9613-9619.
78. Perera, R. T.; Johnson, R. P.; Edwards, M. A.; White, H. S., Effect of the Electric Double Layer on the Activation Energy of Ion Transport in Conical Nanopores. J. Phys. Chem. C 2015, 119, 24299-24306.
79. Ali, M.; Ramirez, P.; Nasir, S.; Nguyen, Q. H.; Ensinger, W.; Mafe, S., Current rectification by nanoparticle blocking in single cylindrical nanopores. Nanoscale 2014, 6, 10740-10745.
80. Sa, N. Y.; Lan, W. J.; Shi, W. Q.; Baker, L. A., Rectification of Ion Current in Nanopipettes by External Substrates. ACS Nano 2013, 7, 11272-11282.
81. Sa, N. Y.; Baker, L. A., Rectification of Nanopores at Surfaces. J. Am. Chem. Soc. 2011, 133, 10398-10401.
82. Wang, D. C.; Kvetny, M.; Liu, J.; Brown, W.; Li, Y.; Wang, G. L., Transmembrane Potential across Single Conical Nanopores and Resulting Memristive and Memcapacitive Ion Transport. J. Am. Chem. Soc. 2012, 134, 3651-3654.
83. Guerrette, J. P.; Zhang, B., Scan-Rate-Dependent Current Rectification of Cone-Shaped Silica Nanopores in Quartz Nanopipettes. J. Am. Chem. Soc. 2010, 132, 17088-17091.
84. Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L., Colloidal Synthesis of Lettuce-like Copper Sulfide for Light-Gating Heterogeneous Nanochannels. ACS Nano 2016, 10, 3606-3613.
85. Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L., Artifi cial Ion Channels Regulating Light- Induced Ionic Currents in Photoelectrical Conversion Systems. Adv. Mater. 2014, 26, 2329-2334.
86. Liu, Q.; Xiao, K.; Wen, L. P.; Lu, H.; Liu, Y. H.; Kong, X. Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L., Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. J. Am. Chem. Soc. 2015, 137, 11976-11983.
87. Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W., Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano 2012, 6, 9247-9257.
88. Actis, P.; Vilozny, B.; Seger, R. A.; Li, X.; Jejelowo, O.; Rinaudo, M.; Pourmand, N., Voltage-Controlled Metal Binding on Polyelectrolyte-Functionalized Nanopores. Langmuir 2011, 27, 6528-6533.
89. Sa, N. Y.; Fu, Y. Q.; Baker, L. A., Reversible Cobalt Ion Binding to Imidazole-Modified Nanopipettes. Anal. Chem. 2010, 82, 9963-9966.
90. Liu, Q.; Xiao, K.; Wen, L. P.; Dong, Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L., A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nano channel. ACS Nano 2014, 8, 12292-12299.
91. Liu, Q.; Wen, L. P.; Xiao, K.; Lu, H.; Zhang, Z.; Xie, G. H.; Kong, X. Y.; Bo, Z. S.; Jiang, L., A Biomimetic Voltage-Gated Chloride Nanochannel. Adv. Mater. 2016, 28, 3181-3186.
92. Xu, Y. L.; Sui, X.; Guan, S.; Zhai, J.; Gao, L. C., Olfactory Sensory Neuron-Mimetic CO2 Activated Nanofluidic Diode with Fast Response Rate. Adv. Mater. 2015, 27, 1851-1855.
93. Hou, G. L.; Zhang, H. C.; Xie, G. H.; Xiao, K.; Wen, L. P.; Li, S. H.; Tian, Y.; Jiang, L., Ultratrace detection of glucose with enzyme-functionalized single nanochannels. J. Mater. Chem. A 2014, 2, 19131-19135.
94. Deblois, R. W.; Bean, C. P.; Wesley, R. K. A., Electrokinetic Measurements with Submicron Particles and Pores by Resistive Pulse Technique. J. Colloid Interface Sci. 1977, 61, 323-335.
95. Deblois, R. W.; Bean, C. P., Counting and Sizing of Submicron Particles by Resistive Pulse Technique. Rev. Sci. Instrum. 1970, 41, 909-916.
96. Qin, Z. P.; Zhe, J. A.; Wang, G. X., Effects of particle's off-axis position, shape, orientation and entry position on resistance changes of micro Coulter counting devices. Meas. Sci. Technol. 2011, 22.
97. Willmott, G. R.; Parry, B. E. T., Resistive pulse asymmetry for nanospheres passing through tunable submicron pores. J. Appl. Phys. 2011, 109, 094307.
98. Traversi, F.; Raillon, C.; Benameur, S. M.; Liu, K.; Khlybov, S.; Tosun, M.; Krasnozhon, D.; Kis, A.; Radenovic, A., Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 2013, 8, 939-945.
99. Liu, H. T.; He, J.; Tang, J. Y.; Liu, H.; Pang, P.; Cao, D.; Krstic, P.; Joseph, S.; Lindsay, S.; Nuckolls, C., Translocation of Single-Stranded DNA Through Single-Walled Carbon Nanotubes. Science 2010, 327, 64-67.
100. Bell, N. A. W.; Keyser, U. F., Specific Protein Detection Using Designed DNA Carriers and Nanopores. J. Am. Chem. Soc. 2015, 137, 2035-2041.
101. Sexton, L. T.; Horne, L. P.; Sherrill, S. A.; Bishop, G. W.; Baker, L. A.; Martin, C. R., Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 2007, 129, 13144-13152.
102. Qiu, Y. H.; Lin, C. Y.; Hinkle, P.; Plett, T. S.; Yang, C.; Chacko, J. V.; Digman, M. A.; Yeh, L. H.; Hsu, J. P.; Siwy, Z. S., Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles. ACS Nano 2016, 10, 8413-8422.
103. Howorka, S.; Siwy, Z., Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360-2384.
104. Wanunu, M.; Morrison, W.; Rabin, Y.; Grosberg, A. Y.; Meller, A., Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 2010, 5, 160-165.
105. Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C., Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Lett. 2012, 12, 1038-1044.
106. Feng, J. D.; Liu, K.; Bulushev, R. D.; Khlybov, S.; Dumcenco, D.; Kis, A.; Radenovic, A., Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 2015, 10, 1070-1076.
107. Fologea, D.; Uplinger, J.; Thomas, B.; McNabb, D. S.; Li, J. L., Slowing DNA translocation in a solid-state nanopore. Nano Lett. 2005, 5, 1734-1737.
108. Lu, B.; Hoogerheide, D. P.; Zhao, Q.; Zhang, H. B.; Zhipeng, T. P.; Yu, D. P.; Goloychenko, J. A., Pressure-Controlled Motion of Single Polymers through Solid-State Nanopores. Nano Lett. 2013, 13, 3048-3052.
109. Zhang, H. B.; Zhao, Q.; Tang, Z. P.; Liu, S.; Li, Q. T.; Fan, Z. C.; Yang, F. H.; You, L. P.; Li, X. M.; Zhang, J. M.; Yu, D. P., Slowing Down DNA Translocation Through Solid-State Nanopores by Pressure. Small 2013, 9, 4112-4117.
110. Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J. L.; Yang, J.; Mayer, M., Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 2011, 6, 253-260.
111. Banerjee, S.; Wilson, J.; Shim, J.; Shankla, M.; Corbin, E. A.; Aksimentiev, A.; Bashir, R., Slowing DNA Transport Using Graphene-DNA Interactions. Adv. Funct. Mater. 2015, 25, 936-946.
112. Kim, D. K.; Duan, C. H.; Chen, Y. F.; Majumdar, A., Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 2010, 9, 1215-1224.
113. Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L., Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Adv. Funct. Mater. 2010, 20, 1339-1344.
114. Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L., High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
115. Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L., Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. J. Am. Chem. Soc. 2015, 137, 14765-14772.
116. Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
117. van der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C., Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 2007, 7, 1022-1025.
118. van der Heyden, F. H. J.; Stein, D.; Dekker, C., Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95, 116104.
119. Qin, S.; Liu, D.; Chen, Y.; Chen, C.; Wang, G.; Wang, J. M.; Razal, J. M.; Lei, W. W., Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy 2018, 47, 368-373.
120. Guo, W.; Cheng, C.; Wu, Y. Z.; Jiang, Y. A.; Gao, J.; Li, D.; Jiang, L., Bio-Inspired Two-Dimensional Nanofluidic Generators Based on a Layered Graphene Hydrogel Membrane. Adv. Mater. 2013, 25, 6064-6068.
121. Wen, L. P.; Tian, Y.; Guo, Y. L.; Ma, J.; Liu, W. D.; Jiang, L., Conversion of Light to Electricity by Photoinduced Reversible pH Changes and Biomimetic Nanofluidic Channels. Adv. Funct. Mater. 2013, 23, 2887-2893.
122. Wen, L. P.; Hou, X.; Tian, Y.; Zhai, J.; Jiang, L., Bio-inspired Photoelectric Conversion Based on Smart-Gating Nanochannels. Adv. Funct. Mater. 2010, 20, 2636-2642.
123. Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M. J.; Golovchenko, J. A., Ion-beam sculpting at nanometre length scales. Nature 2001, 412, 166-169.
124. Storm, A. J.; Chen, J. H.; Ling, X. S.; Zandbergen, H. W.; Dekker, C., Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2003, 2, 537-540.
125. Gao, J.; Guo, W.; Geng, H.; Hou, X.; Shuai, Z. G.; Jiang, L., Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Res. 2012, 5, 99-108.
126. Wang, G. L.; Zhang, B.; Wayment, J. R.; Harris, J. M.; White, H. S., Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc. 2006, 128, 7679-7686.
127. Li, X.; Bohn, P. W., Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 2000, 77, 2572-2574.
128. Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J., Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes. Nature 2005, 438, 44-44.
Chapter 2
1. Siwy, Z. S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
2. Guo, W.; Tian, Y.; Jiang, L., Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Acc. Chem. Res. 2013, 46, 2834-2846.
3. Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C., Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Anal. Chem. 2015, 87, 172-187.
4. Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W., Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano 2012, 6, 9247-9257.
5. Liu, Q.; Xiao, K.; Wen, L. P.; Dong, Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L., A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nano channel. ACS Nano 2014, 8, 12292-12299.
6. Chen, Z. M.; Shen, G. Z.; Li, Y. P.; Zhang, P.; Ji, H. W.; Liu, S. C.; Li, C. Y.; Qian, Z. J., A Novel Biomimetic Logic Gate for Sensitive and Selective Detection of Pb(II) Base on Porous Alumina Nanochannels. Electrochem. Commun. 2015, 60, 83-87.
7. Howorka, S.; Siwy, Z., Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360-2384.
8. Lin, L.; Yan, J.; Li, J. H., Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546-10551.
9. Makra, I.; Gyurcsanyi, R. E., Electrochemical Sensing with Nanopores: A Mini Review. Electrochem. Commun. 2014, 43, 55-59.
10. Ali, M.; Nasir, S.; Ensinger, W., Bioconjugation-Induced Ionic Current Rectification in Aptamer-Modified Single Cylindrical Nanopores. Chem. Commun. 2015, 51, 3454-3457.
11. Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L., Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Adv. Funct. Mater. 2010, 20, 1339-1344.
12. Kim, D. K.; Duan, C. H.; Chen, Y. F.; Majumdar, A., Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 2010, 9, 1215-1224.
13. Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L., High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
14. Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L., Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. J. Am. Chem. Soc. 2015, 137, 14765-14772.
15. Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455-458.
16. Xie, G. H.; Wen, L. P.; Jiang, L., Biomimetic smart nanochannels for power harvesting. Nano Res. 2016, 9, 59-71.
17. Siwy, Z.; Kosinska, I. D.; Fulinski, A.; Martin, C. R., Asymmetric Diffusion through Synthetic Nanopores. Phys. Rev. Lett. 2005, 94, 048102.
18. Cheng, L. J.; Guo, L. J., Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett. 2007, 7, 3165-3171.
19. Yang, M.; Yang, X. H.; Wang, K. M.; Wang, Q.; Fan, X.; Liu, W.; Liu, X. Z.; Liu, J. B.; Huang, J., Tuning Transport Selectivity of Ionic Species by Phosphoric Acid Gradient in Positively Charged Nanochannel Membranes. Anal. Chem. 2015, 87, 1544-1551.
20. Wanunu, M.; Morrison, W.; Rabin, Y.; Grosberg, A. Y.; Meller, A., Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 2010, 5, 160-165.
21. Stein, D.; Kruithof, M.; Dekker, C., Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93, 035901.
22. Ma, Y.; Yeh, L. H.; Lin, C. Y.; Mei, L. J.; Qian, S. Z., pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Anal. Chem. 2015, 87, 4508-4514.
23. Kong, X.; Jiang, J.; Lu, D. N.; Liu, Z.; Wu, J. Z., Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels. J. Phys. Chem. Lett. 2014, 5, 3015-3020.
24. Jia, M.; Kim, T., Multiphysics Simulation of Ion Concentration Polarization Induced by a Surface-Patterned Nanoporous Membrane in Single Channel Devices. Anal. Chem. 2014, 86, 10365-10372.
25. Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T., Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713-720.
26. Yeh, L. H.; Zhang, M.; Qian, S.; Hsu, J. P.; Tseng, S., Ion Concentration Polarization in Polyelectrolyte-Modified Nanopores. J. Phys. Chem. C 2012, 116, 8672-8677.
27. Zeng, Z.; Yeh, L. H.; Zhang, M.; Qian, S., Ion Transport and Selectivity in Biomimetic Nanopores with pH-Tunable Zwitterionic Polyelectrolyte Brushes. Nanoscale 2015, 7, 17020-17029.
28. Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic Selectivity of Single Nanochannels. Nano Lett. 2008, 8, 1978-1985.
29. Ai, Y.; Zhang, M. K.; Joo, S. W.; Cheney, M. A.; Qian, S. Z., Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores. J. Phys. Chem. C 2010, 114, 3883-3890.
30. Lin, D. H.; Lin, C. Y.; Tseng, S.; Hsu, J. P., Influence of Electroosmotic Flow on the Ionic Current Rectification in a pH-Regulated, Conical Nanopore. Nanoscale 2015, 7, 14023-14031.
31. Yeh, L. H.; Zhang, M.; Hu, N.; Joo, S. W.; Qian, S.; Hsu, J. P., Electrokinetic Ion and Fluid Transport in Nanopores Functionalized by Polyelectrolyte Brushes. Nanoscale 2012, 4, 5169-5177.
32. Zeng, Z.; Ai, Y.; Qian, S., pH-Regulated Ionic Current Rectification in Conical Nanopores Functionalized with Polyelectrolyte brushes. Phys. Chem. Chem. Phys. 2014, 16, 2465-2474.
33. Ai, Y.; Liu, J.; Zhang, B. K.; Qian, S. Z., Ionic current rectification in a conical nanofluidic field effect transistor. Sens. Actuator B-Chem. 2011, 157, 742-751.
34. Yeh, L. H.; Zhang, M.; Qian, S., Ion Transport in a pH-Regulated Nanopore. Anal. Chem. 2013, 85, 7527-7534.
35. Lin, C. Y.; Yeh, L. H.; Hsu, J. P.; Tseng, S., Regulating Current Rectification and Nanoparticle Transport Through a Salt Gradient in Bipolar Nanopores. Small 2015, 11, 4594-4602.
36. Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P., Salinity Gradient Power: Influences of Temperature and Nanopore Size. Nanoscale 2016, 8, 2350-2357.
37. Liu, H.; Qian, S. Z.; Bau, H. H., The Effect of Translocating Cylindrical Particles on the Ionic Current through a Nanopore. Biophys. J. 2007, 92, 1164-1177.
38. Movahed, S.; Li, D. Q., Electrokinetic transport through nanochannels. Electrophoresis 2011, 32, 1259-1267.
39. Ray, B.; Bandyopadhyay, D.; Sharma, A.; Joo, S. W.; Qian, S.; Biswas, G., Long-wave interfacial instabilities in a thin electrolyte film undergoing coupled electrokinetic flows: a nonlinear analysis. Microfluid. Nanofluid. 2013, 15, 19-33.
40. Ray, B.; Reddy, P. D. S.; Bandyopadhyay, D.; Joo, S. W.; Sharma, A.; Qian, S.; Biswas, G., Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel. Electrophoresis 2011, 32, 3257-3267.
41. Ray, B.; Reddy, P. D. S.; Bandyopadhyay, D.; Joo, S. W.; Sharma, A.; Qian, S., Instabilities in free-surface electro-osmotic flows. Theor. Comp. Fluid. Dyn. 2012, 26, 311-318.
42. Zhang, H.; Tian, Y.; Hou, J.; Hou, G.; Ou, R.; Wang, H.; Jaiang, L., Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation. ACS Nano 2015, 9, 12264–12273.
43. Plett, T.; Shi, W. Q.; Zeng, Y. H.; Mann, W.; Vlassiouk, I.; Baker, L. A.; Siwy, Z. S., Rectification of Nanopores in Aprotic Solvents - Transport Properties of Nanopores with Surface Dipoles. Nanoscale 2015, 7, 19080-19091.
44. Briggs, K.; Kwok, H.; Tabard-Cossa, V., Automated Fabrication of 2-nm Solid-State Nanopores for Nucleic Acid Analysis. Small 2014, 10, 2077-2086.
45. Ai, Y.; Qian, S., Electrokinetic Particle Translocation through a Nanopore. Phys. Chem. Chem. Phys. 2011, 13, 4060-4071.
46. Li, C. Y.; Wu, Z. Q.; Yuan, C. G.; Wang, K.; Xia, X. H., Propagation of Concentration Polarization Affecting Ions Transport in Branching Nanochannel Array. Anal. Chem. 2015, 87, 8194-8202.
47. Zhang, H. C.; Hou, X.; Yang, Z.; Yan, D. D.; Li, L.; Tian, Y.; Wang, H. T.; Jiang, L., Bio-inspired Smart Single Asymmetric Hourglass Nanochannels for Continuous Shape and Ion Transport Control. Small 2015, 11, 786-791.
48. Sa, N. Y.; Lan, W. J.; Shi, W. Q.; Baker, L. A., Rectification of Ion Current in Nanopipettes by External Sub
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69448-
dc.description.abstract奈米流體裝置已成為很有前景的工具用來調節奈米粒子的傳輸、偵測單分子以及整流離子電流。本篇論文完整地探討了雙極性奈米孔道內的離子傳輸行為以及粒子在離子痕跡圓柱形奈米孔道內的輸送現象。我們發現由於不對稱的電荷密度,雙極性奈米孔道展現非常明顯的離子電流整流行為。對雙極性聚電解質刷改質的奈米孔道來說,整流程度隨著鹽濃度提高而降低,並且在聚電解質刷電荷不對稱分布的情況下,隨著電荷的變化而呈現極大值。並且,當施加一鹽濃度梯度在固態雙極性奈米孔道時,離子電流整流的反轉行為將可以被觀察到。我們的模型也證明了,藉由孔道口局部電場的調控,可以達到控制奈米粒子傳輸的效果。此外,我們也針對阻抗脈衝偵測的基礎機制,同時進行實驗及理論的探討。我們發現高度帶電的粒子會比同體積的中性粒子造成更大的電流阻障,這與傳統的想法相違背。這個實驗的發現與理論模型有極佳的吻合,並且可以解釋為高帶電粒子所引起的濃度極化會導致管內嚴重的離子耗盡,從而降低了離子電流。離子電流對脈衝形狀的重要性也在此論文呈現。我們的結果為奈米流體內離子與粒子的傳輸現象提供了更好的瞭解,也為設計相關的裝置提供了有價值的資訊。zh_TW
dc.description.abstractNanofluidic devices have emerged as promising tools for regulating the transport of nanoparticles, sensing single molecules, and rectifying ionic current. This study thoroughly investigates the ion transport behavior in bipolar nanopores and the particle transport phenomenon in ion-tracked cylindrical nanopores. We find that, due to the asymmetric charge density, bipolar nanopores exhibit a pronounced ionic current rectification (ICR) behavior. For the nanopores functionalized with bipolar polyelectrolyte (PE) brushes, the degree of the ICR decreases with increasing bulk salt concentration, and exhibits a local maximum as charge density varies if the PE brushes are asymmetrically distributed. Furthermore, the inversion of ICR behavior can be observed if applying a salt gradient across the solid-state bipolar nanopores. Our modeling also demonstrates that the controlling of the nanoparticle translocation can be achieved by the modulation of the local electric field at the nanopore opening. In addition, the fundamental mechanism of resistive pulse sensing is both experimentally and theoretically investigated. We find that highly charged particle can cause a larger current blockage compared to the neutral particle with same volume, which is against the conventional thought. This experimental finding is in excellent agreement with our theoretical result and can be explained by that the concentration polarization induced by the highly charged particle leads to a significant ion depletion inside the pore, thereby decreasing the ionic current. The importance of the ionic convection on the pulse shape is also presented. Our results provide a better understanding of the transport of ion and particle in nanofluidics, giving valuable information for designing relevant devices.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:15:59Z (GMT). No. of bitstreams: 1
ntu-107-D03524023-1.pdf: 11228386 bytes, checksum: e40a662722295be59adf92dc3d365af7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 I
English Abstract II
Contents IV
List of Figures VI
List of Tables XXVI
Chapter 1 Introduction 1
Chapter 2 Ion Transport in Solid-State Nanopores: The Crucial Role of Reservoir Geometry and Size 37
Chapter 3 Rectification of Ionic Current in Nanopores Functionalized with Bipolar Polyelectrolyte Brushes 61
Chapter 4 Regulating Current Rectification and Nanoparticle Transport through a Salt Gradient in Bipolar Nanopores 94
Chapter 5 Highly Charged Particles Cause a Larger Current Blockage in Cylindrical Pores 127
Chapter 6 Importance of Ionic Convection on the Resistive Pulse Shape in Cylindrical Nanopores 180
Chapter 7 Conclusions 204
Appendix 209
Author Information 224
Publications 226
dc.language.isoen
dc.subject奈米流體zh_TW
dc.subject聚電解質zh_TW
dc.subject離子整流效應zh_TW
dc.subject阻抗脈衝偵測zh_TW
dc.subject電動力學現象zh_TW
dc.subject離子傳輸zh_TW
dc.subjectNanofluidicen
dc.subjectPolyelectrolyteen
dc.subjectElectrokinetic phenomenaen
dc.subjectResistive-pulse sensingen
dc.subjectIon current rectificationen
dc.subjectBipolar nanoporeen
dc.subjectIon transporten
dc.title奈米流體內離子與奈米粒子的電動傳輸:基礎研究與應用zh_TW
dc.titleElectrokinetic Ion and Nanoparticle Transport in Nanofluidics: Fundamental Studies and Applicationsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee曾琇瑱,林祥泰,游琇?,張有義,葉禮賢
dc.subject.keyword奈米流體,離子傳輸,離子整流效應,阻抗脈衝偵測,電動力學現象,聚電解質,zh_TW
dc.subject.keywordNanofluidic,Ion transport,Bipolar nanopore,Ion current rectification,Resistive-pulse sensing,Electrokinetic phenomena,Polyelectrolyte,en
dc.relation.page228
dc.identifier.doi10.6342/NTU201801287
dc.rights.note有償授權
dc.date.accepted2018-07-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
10.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved