請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69435完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Hui-Ping Chang | en |
| dc.contributor.author | 張惠平 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:15:38Z | - |
| dc.date.available | 2018-07-06 | |
| dc.date.copyright | 2018-07-06 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-06 | |
| dc.identifier.citation | Reference
[1] Shinar, J. (2004). Organic light-emitting devices: A survey. New York: Springer. [2] Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913-915. doi:10.1063/1.98799 [3] Mikhnenko, O. V., Blom, P. W., & Nguyen, T. (2015). Exciton diffusion in organic semiconductors. Energy & Environmental Science, 8(7), 1867-1888. doi:10.1039/c5ee00925a [4] Yersin, H. (2004). Transition metal and rare earth compounds: Excited states, transitions, interactions. Berlin: Springer. [5] Organische Elektronik. (n.d.). Retrieved from https://www.iapp.de/organische-elektronik.de/en/?OLEDs___High_Efficiency_OLEDs [6] Dexter Energy Transfer. (2017, May 30). Retrieved from https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Fundamentals/Dexter_Energy_Transfer#Introduction [7] Color vision. (2018, June 29). Retrieved from https://en.wikipedia.org/wiki/Color_vision [8] CIE 1931 color space. (2018, May 30). Retrieved from https://en.wikipedia.org/wiki/CIE_1931_color_space [9] Color temperature. (2018, June 11). Retrieved from https://en.wikipedia.org/wiki/Color_temperature#Correlated_color_temperature [10] Defining the Color Characteristics of White LEDs | DigiKey. (n.d.). Retrieved from https://www.digikey.com/en/articles/techzone/2013/apr/defining-the-color-characteristics-of-white-leds [11] Color Temperature Scale - Atlanta LED Lighting Installation. (n.d.). Retrieved from http://ledthereblight.com/color-temperature-scale/ [12] Color rendering index. (2018, May 25). Retrieved from https://en.wikipedia.org/wiki/Color_rendering_index [13] Richard. (n.d.). LED Lighting - CRI Value. Retrieved from http://www.pi3dscan.com/index.php/instructions/item/led-lighting-cri-value [14] color rendering index (CRI) - 演色性. (n.d.). Retrieved from http://terms.naer.edu.tw/detail/1678813/ [15] HDWiki Team and Hudong UI team. (n.d.). Ⅲ族氮化物半导体材料——宽带隙化合物半导体材料的制备技术——分子束外延——MBE技术的优缺点和基本设备结构- 金属材料专业知识百科网. Retrieved from http://111.207.167.154/index.php?doc-view-106244.html [16] Semiconductor recycling plant case study of InGaN photovoltaic manufacturing - Appropedia: The sustainability wiki. (n.d.). Retrieved July 3, 2018, from http://www.appropedia.org/Semiconductor_recycling_plant_case_study_of_InGaN_photovoltaic_manufacturing [17] D'Andrade, B., Holmes, R., & Forrest, S. (2004). Efficient Organic Electrophosphorescent White-Light-Emitting Device with a Triple Doped Emissive Layer. Advanced Materials, 16(7), 624-628. doi:10.1002/adma.200306670 [18] Sun, Y., Giebink, N. C., Kanno, H., Ma, B., Thompson, M. E., & Forrest, S. R. (2006). Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 440(7086), 908-912. doi:10.1038/nature04645 [19] Ye, J., Zheng, C., Ou, X., Zhang, X., Fung, M., & Lee, C. (2012). Management of Singlet and Triplet Excitons in a Single Emission Layer: A Simple Approach for a High-Efficiency Fluorescence/Phosphorescence Hybrid White Organic Light-Emitting Device. Advanced Materials, 24(25), 3410-3414. doi:10.1002/adma.201201124 [20] Zhou, G., Wang, Q., Wang, X., Ho, C., Wong, W., Ma, D., … Lin, Z. (2010). Metallophosphors of platinum with distinct main-group elements: a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs. Journal of Materials Chemistry, 20(35), 7472. doi:10.1039/c0jm01159b [21] Xiang, H., Cheng, J., Ma, X., Zhou, X., & Chruma, J. J. (2013). Near-infrared phosphorescence: materials and applications. Chemical Society Reviews, 42(14), 6128. doi:10.1039/c3cs60029g [22] Mauro, M., Aliprandi, A., Septiadi, D., Kehr, N. S., & De Cola, L. (2014). When self-assembly meets biology: luminescent platinum complexes for imaging applications. Chem. Soc. Rev, 43(12), 4144-4166. doi:10.1039/c3cs60453e [23] Bailey, J. A., Miskowski, V. M., & Gray, H. B. (1993). Spectroscopic and structural properties of binuclear platinum-terpyridine complexes. Inorganic Chemistry, 32(4), 369-370. doi:10.1021/ic00056a001 [24] Che, C., Chan, S., Xiang, H., Chan, M. C., Liu, Y., & Wang, Y. (2004). Tetradentate Schiff base platinum(ii) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices. Chemical Communications, (13), 1484. doi:10.1039/b402318h [25] Poloek, A., Chen, C., & Chen, C. (2014). High performance hybrid white and multi-colour electroluminescence from a new host material for a heteroleptic naphthyridinolate platinum complex dopant. Journal of Materials Chemistry C, 2(8), 1376-1380. doi:10.1039/c3tc32394c [26] Poloek, A., Lin, C., Chen, C., & Chen, C. (2014). High colour rendering index and colour stable hybrid white efficient OLEDs with a double emitting layer structure using a single phosphorescence dopant of heteroleptic platinum complexes. Journal of Materials Chemistry C, 2(48), 10343-10356. doi:10.1039/c4tc01791a [27] Poloek, A., Wang, C., Chang, Y., Lin, C., Chen, C., & Chen, C. (2015). New platinum complexes exhibiting host dependent photoluminescence as single dopants in double emitting layer, voltage independent hybrid white electroluminescence devices. Journal of Materials Chemistry C, 3(42), 11163-11177. doi:10.1039/c5tc02523k [28] Zhao, F., Zhu, L., Liu, Y., Wang, Y., & Ma, D. (2015). Doping-free hybrid white organic light-emitting diodes with fluorescent blue, phosphorescent green and red emission layers. Organic Electronics, 27, 207-211. doi:10.1016/j.orgel.2015.09.025 [29] Wu, S., Li, S., Sun, Q., Huang, C., & Fung, M. (2016). Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure. Scientific Reports, 6(1). doi:10.1038/srep25821 [30] Poloek, A. (2014). Study of heteroleptic platinum complexes based on hydroxynapthyridine derivatives as phosphorescence dopants for hybrid white OLED applications (Doctoral dissertation, National Taiwan University, Taipei, Taiwan). [31] Xiang, C., Koo, W., So, F., Sasabe, H., & Kido, J. (2013). A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices. Light: Science & Applications, 2(6), e74-e74. doi:10.1038/lsa.2013.30 [32] Hofmann, S., Furno, M., Lüssem, B., Leo, K., & Gather, M. C. (2013). Investigation of triplet harvesting and outcoupling efficiency in highly efficient two-color hybrid white organic light-emitting diodes. physica status solidi (a), 210(8), 1467-1475. doi:10.1002/pssa.201329107 [33] Lee, C. H., Shin, Y. C., Kwon, D. S., & Lee, H. K. (2005). Improved electroluminescence efficiency of organic light-emitting diodes by using molecularly doped hole-transport layer. Organic Light-Emitting Materials and Devices IX. doi:10.1117/12.627072 [34] Lee, H., Ahn, H., & Lee, C. (2011). Device characteristics of blue phosphorescent organic light-emitting diodes depending on the electron transport materials. Journal of Information Display, 12(4), 219-222. doi:10.1080/15980316.2011.621323 [35] Bin, J., Cho, N., & Hong, J. (2012). New Host Material for High-Performance Blue Phosphorescent Organic Electroluminescent Devices. Advanced Materials, 24(21), 2911-2915. doi:10.1002/adma.201200972 [36] Reineke, S., & Baldo, M. A. (2014). Room temperature triplet state spectroscopy of organic semiconductors. Scientific Reports, 4(1). doi:10.1038/srep03797 [37] Schwartz, G., Pfeiffer, M., Walzer, K., & Leo, K. (2007). Harvesting triplet excitons from fluorescent blue emitters for high-efficiency white organic light emitting diodes. Organic Light Emitting Materials and Devices XI. doi:10.1117/12.746887 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69435 | - |
| dc.description.abstract | 鉑錯合物應用於有機發光二極體的研究在近年受到矚目,因其有易形成激發聚物的特性、因而有更寬的發光頻譜,在製作高演色性白色有機發光二極體的方面具有優勢。
應用白色有機發光二極體於固態照明的領域時,常見的作法是用藍色螢光材料取代藍色磷光材料,以避免其壽命低的劣勢。在陳錦地博士實驗室前幾年的研究中,他們研發出多種鉑錯合物並使用兩種主體材料「4P-NPD(藍色螢光材料)、CBP」,成功製作出螢光-磷光混成白光有機發光二極體。然而元件的亮度和效率仍需改善。 本篇論文使用FPtmND作為磷光發光材料,在單體狀態時其能放出綠光、在激發二聚物的狀態時其能放出橘紅光。我們的研究目的是找出合適的材料和元件結構以得到高演色性、高亮度和高效率的混成白光有機發光二極體。 本篇研究分為三部分。第一部分我們將FPtmND以不同濃度分別摻雜在4P-NPD、CBP和TCTA中,探討濃度跟發光頻譜之間的關係,其中4P-NPD扮演主體材料和藍色螢光發光體的角色。第二部分則是研究FPtmND同時摻雜在兩種主體材料,或一個元件包含兩層單主體材料-單客體材料的發光層,並且分析不同摻雜濃度對於發光頻譜形狀的影響。 第三部分,我們將超薄發光層的概念應用在FPtmND上。我們找出最佳的CBP和FPtmND的厚度,並重複CBP(3.3nm)/FPtmND(0.15nm)的結構來改善有機發光二極體的亮度與效率,再加上沒有摻雜的4P-NPD層來調整發光顏色跟演色性。 本篇論文最好的實驗結果為 ITO / NPB(40nm) /【CBP (3.3nm) / FPtmND (0.15nm) 】* 9 / 4P-NPD (5 nm) / TPBi (40nm) / LiF(1nm) / Al (150nm) 最大亮度為8130 cd/m^2,演色性>85;在亮度為1000 cd/m^2 時,外部量子效率= 4.25%,電流效率為6.70 cd/A,功率效率為2.00 lm/W。 | zh_TW |
| dc.description.abstract | Platinum complexes have drawn increasing attention for the use in organic light-emitting diode(OLED) applications because they can easily form excimers and have broadened emission spectrums, which is an advantage for high color rendering index(CRI) white organic light-emitting diode (WOLED).
For WOLED solid-state lighting, fluorescence-phosphorescence hybrid WOLED is a common method that researchers utilize the blue fluorescent material instead of the blue phosphorescent material to avoid the poor lifetime of blue phosphorescence. In the previous research of Chin-Ti Chen’s lab, hybrid WOLEDs with various platinum complexes, 4P-NPD(blue fluorescent material) as the host material and CBP as the host material have been studied. However, the devices still need further improvements in luminance and efficiency. In this whole thesis, we utilized FPtmND as the phosphorescent emitter, which can emit green photons as the monomer and orange photons as the excimers. Our goal is to find the appropriate materials and structures to get WOLED with high CRI, luminance and efficiency. Our studies can be categorized into 3 parts. In the first part, we figured out the relation between the doping concentration of FPtmND and the emissive spectrums in 3 different host materials: CBP, 4P-NPD and TCTA, while 4P-NPD is not only the host but also the blue fluorescent emitter. In the second part, we discussed 6 kinds of co-host EML and one kind of two EML in one OLED, and analyzed the influence of different mixing ratios to the shape of the emission spectrums. In the third part, we applied the idea of the ultra-thin emissive layer(UEML) on FPtmND. We optimized the OLED by tuning the appropriate thicknesses of FPtmND and CBP, repeating the CBP(3.3nm)/FPtmND(0.15nm) structures to get higher luminance and efficiency, and adding a non-doped 4P-NPD layer into the OLED to enhance the CRI and tune the color. Our best result in this thesis is: ITO / NPB(40nm) /【CBP (3.3nm) / FPtmND (0.15nm) 】* 9 / 4P-NPD (5 nm) / TPBi (40nm) / LiF(1nm) / Al (150nm), which is with Lmax = 8130 cd/m^2, CRI > 85, and EQE = 4.25%, current efficiency = 6.70 cd/A, power efficiency = 2.00 lm/W at 1000 cd/m^2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:15:38Z (GMT). No. of bitstreams: 1 ntu-107-R04941071-1.pdf: 14731834 bytes, checksum: 9e19ebdecb614f1d4ba873100233b263 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝……………………………………………………………………………………i
摘要…………………………………………………………………………………iii Abstract………………………………………………………………………………….iv Table of Contents………………………………………………………………………..vi List of Figures…………………………………………………………………………...xi List of Tables…………………………………………………………………………....xx Chap 1 Introduction ................................................................................................ 1 1.1 Organic light emitting diode (OLED) .............................................................. 1 1.2 HOMO and LUMO in organic semiconductor ................................................. 2 1.3 The structure and the operating principle of OLED ......................................... 3 1.4 Optimization of OLED ..................................................................................... 4 1.5 Mechanisms of fluorescence and phosphorescence in OLED .......................... 6 1.6 Energy transfer in the Donor-Acceptor system ................................................ 8 1.6.1 Förster energy transfer .................................................................................. 9 1.6.2 Dexter energy transfer .................................................................................. 9 1.7 Definition of OLED efficiency ....................................................................... 11 1.7.1 External quantum efficiency (ηext , or EQE) ............................................. 11 1.7.2 Current efficiency(ηL, or CE) and Power efficiency(ηP, or PE) ................. 12 1.8 Quantitative values for color science.............................................................. 12 1.8.1 CIE Chromaticity Diagram (1931) ............................................................. 12 1.8.2 Correlated Color Temperature(CCT) ......................................................... 13 1.8.3 Color rendering index(CRI)........................................................................ 15 1.9 White organic light‐emitting diodes (WOLED) ............................................. 17 1.10 Hybrid white OLED based on Platinum complex .......................................... 20 1.10.1 The chemical structure of platinum complex and the mechanism of the excimer formation ................................................................................................... 20 1.10.2 Hybrid white OLEDs with platinum complexes .................................... 21 1.11 WOLED with ultra-thin emissive layers(UEMLs) ......................................... 25 1.12 Motivation and scope of the thesis ................................................................. 27 Chap 2 Experimental methods and procedures .................................................. 29 2.1 Experimental materials ................................................................................... 29 2.1.1 Anode material ........................................................................................... 29 2.1.2 Organic materials ........................................................................................ 29 2.1.3 Cathode material ......................................................................................... 34 2.2 Illustration of Passive Matrix OLED .............................................................. 34 2.3 Fabrication process ......................................................................................... 34 2.3.1 Photolithography for ITO substrates .......................................................... 35 2.3.2 Cutting and cleaning of ITO substrates ...................................................... 36 2.3.3 Thermal vacuum deposition ....................................................................... 37 2.3.4 UV glue encapsulation................................................................................ 38 2.4 Device measurement....................................................................................... 40 2.5 Some imperfect factors in this thesis .............................................................. 42 Chap 3 Study of OLED with a single-host-single-dopant EML ..................... 45 3.1 Introduction .................................................................................................... 45 3.2 Experiment and research design ..................................................................... 45 3.3 Result and discussion ..................................................................................... 46 3.3.1 4P-NPD as host materials ........................................................................... 46 3.3.2 CBP as the host material ............................................................................. 53 3.3.3 TCTA as the host material .......................................................................... 60 3.4 Conclusion ...................................................................................................... 65 Chap 4 Study of OLED with two host materials and single dopant ................. 67 4.1 Introduction .................................................................................................... 67 4.2 Experiment and research design ..................................................................... 67 4.3 Result and discussion ..................................................................................... 69 4.3.1 Utilize CBP and 4P-NPD as host materials in one co-host EML ............... 69 4.3.2 Utilize TCTA and 4P-NPD as host materials ............................................. 80 4.3.3 OLED with the same EMLs but different thickness of ETL or HTL ......... 84 4.4 Conclusion ...................................................................................................... 93 Chap 5 Hybrid white OLED achieved by ultra-thin emissive layers(UEMLs) and non-doped blue fluorescent layer ...................................................................... 95 5.1 Introduction .................................................................................................... 95 5.2 Experiment and research design ..................................................................... 95 5.3 OLEDs with one ultra-thin emissive layer ..................................................... 98 5.3.1 Thickness v.s. emission spectrums ............................................................. 98 5.3.2 Pt complex at the interface of different donor materials .......................... 102 5.4 OLEDs with UEMLs and quantum well structures ...................................... 106 5.4.1 Utilizing CBP as donor material and optimizing its thickness for quantum well structure ......................................................................................................... 106 5.4.2 Repeat CBP/FPtmND structure between NPB and TPBi. ........................ 109 5.5 Utilize CBP/FPtmND repeated structures and non-doped 4P-NPD layer to achieve hybrid white UEML OLED ......................................................................... 112 5.6 Conclusion .................................................................................................... 116 Chap 6 Summary and Outlook ........................................................................... 118 Reference ................................................................................................................. 120 | |
| dc.language.iso | zh-TW | |
| dc.subject | 混成白光 | zh_TW |
| dc.subject | 激發二聚物 | zh_TW |
| dc.subject | 超薄發光層 | zh_TW |
| dc.subject | 鉑錯合物 | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | platinum complex | en |
| dc.subject | excimer | en |
| dc.subject | ultrathin emissive layer | en |
| dc.subject | OLED | en |
| dc.subject | hybrid white | en |
| dc.title | 螢光-磷光混成白光有機發光二極體奠基於鉑錯合物及多種主體材料之研究 | zh_TW |
| dc.title | Investigation of Fluorescence-Phosphorescence Hybrid White OLEDs Based on the Platinum Complex and Various Host Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳忠幟(Chung-Chih Wu),陳錦地(Chin-Ti Chen) | |
| dc.subject.keyword | 有機發光二極體,鉑錯合物,混成白光,激發二聚物,超薄發光層, | zh_TW |
| dc.subject.keyword | OLED,platinum complex,hybrid white,excimer,ultrathin emissive layer, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU201801343 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 14.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
