Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于靖
dc.contributor.authorTing-Han Huangen
dc.contributor.author黃庭瀚zh_TW
dc.date.accessioned2021-06-17T03:15:35Z-
dc.date.available2018-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-06
dc.identifier.citation[Br] R. Brauer, On the zeta-functions of algebraic number fields, American
Journal of Mathematics, vol. 69 no. 2, p. 243-250, 1947.
[BS] Z. Borevich & I. Shafarevich, Number Theory, Academic Press, London,
1966.
[CR] C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and
Associative Algebras, Interscience, 1962.
[De] P. Deligne, Formes modulaires et représentations l-adiques, Séminaire
Bourbaki, vol. 1968/1969, exposé no. 355, Lecture Notes no. 179,
Springer, p. 139-172, 1971.
[DiaSh] Fred Diamond & Jerry Shurman, A First Course in Modular Forms,
GTM 228, Springer.
[DS] P. Deligne & J. P. Serre, Formes modulaires de pois 1, Ann. sci. E.N.S.
4-th ed. ser., t.7, p. 507-530, 1974.
[HW] G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers,
3rd edit., Oxford, 1954.
[La1] Serge Lang, Algebra, vol. 1, GTM 211, Springer.
[La2] Serge Lang, Introduction to Modular Forms, Grundlehren der mathematischen
Wissenschaften 222, Springer, 1976.
[Li] W. Li, Newforms and functional equations, Math. Ann. 212, p. 285-315,
1975.
[Ll] R. Langlands, Base Change for GL2, Ann. of Math. Studies 108, Princeton
University Press, 1985.
[Mar] J. Martinet, Character theory and Artin L-functions, Algebraic Number
Fields, edited by A. Frölish, Academic Press.
[Mi] Toshitsune Miyake, Modular Forms, Springer.
[Neu] J. Neukirch, Class Field Theory, GTM 280, Springer.
[Ogg] A. P. Ogg, On the eigenvalues of Hecke operators, Math. Ann., vol.
179, p. 101-108, 1969.
[Ra] R.A. Rankin, Contributions to the theory of Ramanujan’s function (n)
and similar arithmetical functions I, II, Proc. Cambridge Phil. Soc., vol.
35, p. 351-372, 1939.
[Se1] J-P. Serre, Modulars Forms and Galois Representations, Algebraic
Number Fields, edited by A. Frölish, Academic Press.
[Se2] J-P. Serre, Linear Representations of Finite Groups, GTM 42, Springer.
[Se3] J-P. Serre, A Course in Arithmetic, GTM 7, Springer.
[Se4] J-P. Serre, Local Fields, GTM 67, Springer.
[Sh1] Goro Shimura, Introduction to the Arithmetic Theory of Automorphic
Functions, Princeton University Press, 1971.
[Sh2] Goro Shimura, Sur les intégrales attachées aux formes automorphes,
Journal Math. Soc. Japan, vol. 11 no. 4, p. 291-311, 1959.
[Sil] Joseph H. Silverman, Advanced Topics in the Arithmetics of Elliptic
Curves, GTM 151, Springer.
[Ta] J. T. Tate, Local Constant, Algebraic Number Fields, edited by A.
Frölish, Academic Press.
[Tu] J. Tunnel, Artin’s conjecture for representations of octahedral types,
Bull. A.M.S. 5, p. 173-175, 1981.
[Wi] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of
Math., 141, p. 443-551, 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69433-
dc.description.abstract本論文主要在介紹伽羅瓦表現與模形式之間的關係。主要的來源是Deligne和Serre在1974年所發表的論文“Formes modulaires de poid 1”。
在第二節我們先敘述了關於伽羅瓦表現與模形式的必要知識。在第三、第四節我們簡略地說明了Deligne和Serre的證明。補充的第一部分則給了一個Wiles的應用結果,剩下的部分則證明了許多我們在第二節所提到的敘述,讓這份論文更加完整。
zh_TW
dc.description.abstractIn this thesis, I briefly give an introduction to the relation between Galois representations and modular forms, especially the modular forms of weight one. A main source is the paper “Formes modulaires de poid 1” written by Deligne and Serre in 1974.
In section 2, we first state some required knowledge of modular forms and Galois representations. In section 3 and 4, we give an outline of the original proof of Deligne and Serre and make some remarks. The first part of the appendix part contains a short introduction of Wiles’ work, which concerns the weight two case. The rest part of the appendix contains some computations and proof of several results mentioned in section 2, so that the thesis is more self-contained.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:15:35Z (GMT). No. of bitstreams: 1
ntu-107-R05221008-1.pdf: 1719379 bytes, checksum: 54b63aeb18e098e1f53584d0611dcb53 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents1 Introduction 2
2 Preliminaries 2
2.1 Modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Hecke operators . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Newforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 L-functions and functional equations . . . . . . . . . . . . . . 6
2.5 Properties of eigenvalues . . . . . . . . . . . . . . . . . . . . . 7
2.6 Galois representations . . . . . . . . . . . . . . . . . . . . . . 8
3 Deligne-Serre lifting lemma 10
4 On the paper of Deligne and Serre 12
4.1 Existence of modular representations . . . . . . . . . . . . . . 12
4.2 On the bound of semi-simple subgroups of GL2(Fℓ) . . . . . . 16
4.3 Construction of the representation over C . . . . . . . . . . 19
4.4 The last part of the proof . . . . . . . . . . . . . . . . . . . . 20
4.5 A result of theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . 23
4.6 An inverse theorem . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Appendix 28
5.1 An application of the lifting lemma . . . . . . . . . . . . . . . 28
5.2 The proof of proposition 2.7 . . . . . . . . . . . . . . . . . . . 32
5.3 Hecke algebras and modular forms . . . . . . . . . . . . . . . 34
5.4 Eichler-Shimura isomorphism . . . . . . . . . . . . . . . . . . 42
5.5 Finite subgroups of GL2(Fℓ) . . . . . . . . . . . . . . . . . . . 50
5.6 Artin L-functions . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Functional equations of cusp forms . . . . . . . . . . . . . . . 57
5.8 Von Staudt–Clausen theorem . . . . . . . . . . . . . . . . . . 62
dc.language.isozh-TW
dc.subject伽羅瓦表現zh_TW
dc.subject模形式zh_TW
dc.subject代數數論zh_TW
dc.subject朗蘭茲綱領zh_TW
dc.subject自守表現zh_TW
dc.subjectAutomorphic representationsen
dc.subjectAlgebraic number thoeryen
dc.subjectModular formsen
dc.subjectGalois representationsen
dc.subjectLanglands programen
dc.subjectAutomorphic representationsen
dc.subjectAlgebraic number thoeryen
dc.subjectModular formsen
dc.subjectGalois representationsen
dc.subjectLanglands programen
dc.title伽羅瓦表現與模形式zh_TW
dc.titleGalois Representations and Modular Formsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余正道,魏福村,洪斌哲
dc.subject.keyword代數數論,模形式,伽羅瓦表現,朗蘭茲綱領,自守表現,zh_TW
dc.subject.keywordAlgebraic number thoery,Modular forms,Galois representations,Langlands program,Automorphic representations,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201801016
dc.rights.note有償授權
dc.date.accepted2018-07-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved