Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康仕仲(Shih-Chung Kang)
dc.contributor.authorLiang-Ting Tsaien
dc.contributor.author蔡亮廷zh_TW
dc.date.accessioned2021-06-17T03:15:21Z-
dc.date.available2020-07-26
dc.date.copyright2018-07-26
dc.date.issued2018
dc.date.submitted2018-07-08
dc.identifier.citationKorman, T. M., Fischer, M. A. and Tatum, C. B. (2000) Knowledge and Reasoning for MEP Coordination, J. Constr. Eng. Manage., 2003, 129(6): 627-634
Hu, Z. Z., Zhang, J. P., Yu, F. Q., Tian, P. L. and Xiang, X. S. (2016) Advances in Engineering Software 100: 215-230
Wang, J., Wang, X., Shou, W., Chong, H. Y. and Guo, J. (2016) Building information modeling-based integration of MEP layout designs and constructability, Automation in Construction 61, 134–146.
Deliang, L, & Huibiao, L. (2009). Interfere-check applying to 3D automatic pipe route arrangement. Proceedings of International Conference on Computational Intelligence and Software Engineering, Wuhan, 11–13.
Park, C. S., Lee, D. Y., Kwon, O. S. and Wang, X. (2013) A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template, Automation in Construction 33, 61–71.
Lee, C. H, Tsai, M. H. and Kang, S. C. (2014) A visual tool for accessibility study of pipeline maintenance during design. Visualization in Engineering 2014 2:6.
Bae, H., Golparvar, F. M. and White, J. (2013) High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications, Visualization in Engineering, 1:3.
Paik, S. M., Leviakangas, P., Morrison, D. Naas, L. and Wang, X. (2016) Building Information Modelling in Change Management: A Case Study, ICCCBE 2016, 438-445.
Tserng, H. P., Yin Y. L., Jaselskis, E. J., Hung, W. and Lin, Y. (2011) Modularization and assembly algorithm for efficient MEP construction, Automation in Construction 20, 837–863.
Leite, F., Akcamete, A., Akinci, B., Atasoy, G. and Kiziltas, S. (2011) Analysis of modeling effort and impact of different levels of detail in building information models, Automation in Construction 20, 601–609.
Lee, G. and Kim, J. W. (2014) Parallel vs. Sequential Cascading MEP Coordination Strategies: A Pharmaceutical Building Case Study, Automation in Construction 43, 170–179.
Bosché, F., Ahmed, M., Turkan, Y., Haas, C. T. and Haas, R. (2014) The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components, Automation in Construction 49, 201–213.
Dimitrov, A. and Golparvar-Fard, M. (2015) Segmentation of building point cloud models including detailed architectural/structural features and MEP systems, Automation in Construction 51 (2015) 32–45.
Kalasapudi, V. S., Tang, P. and Turkan, Y. (2017) Computationally efficient change analysis of piece-wise cylindrical building elements for proactive project control, Automation in Construction 81 (2017) 300–312.
Wang, L. and Leite, F. (2016) Formalized knowledge representation for spatial conflict coordination of mechanical, electrical and plumbing (MEP) systems in new building projects, Automation in Construction 64, 20–26.
Dong, S., Behzadan, A. H., Chen, F. and Kamat, V. R. (2013) Collaborative visualization of engineering processes using tabletop augmented reality, Advances in Engineering Software 55, 45–55.
Lin, T. H., Liu, C. H., Tsai, M. H. and Kang, S. C. (2015) Using Augmented Reality in a Multiscreen Environment for Construction Discussion, J. Comput. Civ. Eng., 29(6): 04014088.
Meža, S., Turk, Z. and Dolnec, M. (2014) Component based engineering of a mobile BIM-based augmented reality system, Automation in Construction 42, 1–12.
Yeh, K. C., Tsai, M. H. and Kang, S. C. (2012) On-Site Building Information Retrieval by Using Projection-Based Augmented Reality. J. Comput. Civ. Eng., 2012, 26(3): 342-355
Fazel, A. and Izadi, A. (2018) An interactive augmented reality tool for constructing free-form modular surfaces, Automation in Construction 85, 135–145.
Chalhoub, J. and Ayer, S. K. (2018) Using Mixed Reality for electrical construction design communication, Automation in Construction 86, 1–10.
Kang, S. S., Myung, S. and Han, S. H. (1999) A Design expert system for auto-routing of ship pipes. Journal of Ship Production 15, 1-9
Zhu, D. and Latombe, J. C. (1991) Pipe routing-path planning (with many constraints). Proceedings. 1991 IEEE International Conference on Robotics and Automation (3): 1940-1947
Ito T. (1999) A genetic algorithm approach to piping route path planning, Journal of Intelligent Manufacturing 10, 103±114
Park, J. H. and Storch R. L. (2002) Pipe-routing algorithm development: case study of a ship engine room design, Expert Systems with Applications 23, 299–309
Sui, H. and Niu, W. (2016) Branch-pipe-routing approach for ships using improved genetic algorithm, Front. Mech. Eng. 2016, 11(3): 316–323.
Asmara, A. and Nienhuis, U. (2006) Automatic Piping System in Ship (2006) International Conference on Computer and IT Application (COMPIT) 8-10
Liu, D. L. and Lu, H. B. (2009) Interfere-Check Applying to 3D Automatic Pipe Route Arrangement, 2009 International Conference on Computational Intelligence and Software Engineering, 1-3.
Kim, S. H., Ruy, W. S. and Jang S. B. (2013) The development of a practical pipe auto-routing system in a shipbuilding CAD environment using network optimization, Int. J. Naval Archit. Ocean Eng. (2013) 5:468~477
Jiang, W. Y., Lin, Y., Chen, M. and Yu, Y. Y. (2015) A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design, Ocean Engineering 102: 63-70.
Tatum, C. B. and Korman, T. M. (2000) Coordination building system: process and knowledge. J. Archit. Eng., 6(4): 116-121.
Hart, P. E., Nilsson, N. J. and Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4. 4 (2): 100–107.
Jones, E. S. and Soatto, S. (2011) Visual-inertial navigation, mapping and localization: A scalable real-time causal approach. The International Journal of Robotics Research 30 (4): 407-430.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69424-
dc.description.abstract機電管線的衝突解決需要同時考慮多種類的管線系統,雖然建築資訊模型技術(BIM)能夠在設計階段消除施工前的衝突,但由於現有的方法會遇到許多無效的自動碰撞檢測結果、竣工與模型的偏差、施工性和維護性等問題,現場管線的檢查和修改仍然是實務上必要的流程。因此,本研究旨在利用擴增現實技術和路徑規劃演算法開發一套現地之管線檢核與修改系統。該系統讓使用者比較現有的管道模型和實際建立的管道,並重新規劃衝突管道的路徑以獲得無衝突的解決方案。這套系統包括了規劃模組和互動模組。為了考慮現有的機電管線的設計標準,我們在規劃模組中定義了五個限制,分別是斜率、彎頭、高程、上下關係和距離限制。這五項限制被嵌入到A *規劃演算法中,以高搜索速度來尋找解決方案路徑。互動模組則是基於擴增現實視覺化技術所開發,用於將現場使用者的虛擬模型資訊與真實世界的物件相關聯。我們以現有之遊戲引擎的環境在行動裝置上實作了該系統。並且在不同大小的搜索網格和管線優先順序下進行了性能測試以評估計算時間和計劃結果。結果表明,在房間和走廊空間情境下,以網格大小為0.15和0.2公尺的組別進行路徑規劃時,規劃的時間與規劃結果的精確度能夠達到良好的平衡,系統可以在約10秒的時間下,規劃出一組符合機電管線的設計要求的路徑解決方案。我們預期該系統將能夠在工程實務上提供一種有效和高效的衝突解決方法,以改善機電管線的施工和營運維護過程。zh_TW
dc.description.abstractMEP conflict resolution is a complicated process since the multidisciplinary coordination of the MEP engineering. The issues of ineffective collision detection, as-built deviations, and constructability and maintainability always happen in the construction stage unexpectedly. An on-site pipeline inspection and modification system is required. Therefore, this research aims at developing an on-site pipeline inspection and modification system using the Augmented Reality (AR) and path-planning algorithm. The system allows the user to compare the existing pipe model with the as-built pipeline and re-plan the paths of conflicted pipes to obtain a solution without conflicts. The system includes planning module and interaction module. The planning module defines five constraints, which are slope, turning, elevation relation and proximity constraints to consider current MEP design criteria. The constraints are embedded into the A* planning algorithm to search the solution paths with a high searching speed. The interaction module is developed base on the AR visualization technology to link the information from virtual model to the real world for the on-site user. We implemented the system on a mobile device using game engine and conducted performance tests in different diameters of searching girds and priorities of pipes to evaluate the calculating time and planning result. The result shows that in both room and aisle space scenario, the system can obtain a set of path solution with approximately 10 seconds for all the pipes complying with the pre-defined MEP design requirements in the groups of 0.15 and 0.2 meters grid sizes. The system is expected to provide an effective and efficient conflict resolving method to improve the MEP construction process and the future maintenance.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:15:21Z (GMT). No. of bitstreams: 1
ntu-107-R05521601-1.pdf: 2789655 bytes, checksum: 911b7ae20c7ecd6e87bc8536fb24787d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
1. Introduction 1
1.1 MEP Coordination Conflicts 1
1.2 Current Issue 2
1.3 Potential Solution 3
1.4 Objective 4
1.5 Expected Outcomes and Contribution 5
2. Literature Review 7
2.1 MEP Confliction Resolution 7
2.2 Augmented Reality 9
2.3 Piping Path Planning 11
2.4 Needs for future study 14
3. Method 15
3.1 MEP Knowledge 15
3.2 Planning Module 16
3.3 Interaction Module 28
4. Implementation 30
4.1 System Requirement 30
4.2 System Architecture 31
4.3 System Functions 32
5. Evaluation 35
5.1 Test Environment 35
5.2 Test Scenario 35
5.3 Test Results – Room Space 38
5.4 Test Results – Aisle Space 40
5.5 Discussion 43
6. Limitation & Future Work 47
7. Conclusion 48
References 49
dc.language.isoen
dc.subject管線維護性zh_TW
dc.subject擴增實境zh_TW
dc.subject路徑規劃zh_TW
dc.subject管線施工性zh_TW
dc.subject機電管線zh_TW
dc.subject現地衝突排解zh_TW
dc.subjectpipeline maintainabilityen
dc.subjectMEP engineeringen
dc.subjecton-site conflict resolutionen
dc.subjectAugmented Realityen
dc.subjectpath planningen
dc.subjectpipeline constructabilityen
dc.title以現地檢核與修改系統進行機電管線之衝突排解zh_TW
dc.titleAn On-site Pipeline Inspection and Modification System for MEP Conflict Resolutionen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor紀宏霖(Hung-Lin Chi)
dc.contributor.oralexamcommittee李蔡彥(Tsai-Yen Li),林祐正(Yu-Cheng Lin),陳鴻銘(Hung-Ming Chen)
dc.subject.keyword機電管線,現地衝突排解,擴增實境,路徑規劃,管線施工性,管線維護性,zh_TW
dc.subject.keywordMEP engineering,on-site conflict resolution,Augmented Reality,path planning,pipeline constructability,pipeline maintainability,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201801176
dc.rights.note有償授權
dc.date.accepted2018-07-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved