請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6939完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 伍安怡(Betty Wu-Hsieh) | |
| dc.contributor.author | Yu-Chieh Wang | en |
| dc.contributor.author | 王煜傑 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:21:45Z | - |
| dc.date.available | 2017-03-02 | |
| dc.date.available | 2021-05-17T09:21:45Z | - |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-09 | |
| dc.identifier.citation | Abernathy-Carver, K.J., H.A. Sampson, L.J. Picker, and D.Y. Leung. 1995. Milk-induced eczema is associated with the expansion of T cells expressing cutaneous lymphocyte antigen. The Journal of clinical investigation 95:913-918.
An, J., J. Kimura-Kuroda, Y. Hirabayashi, and K. Yasui. 1999. Development of a novel mouse model for dengue virus infection. Virology 263:70-77. Biselli, R., P.M. Matricardi, R. D'Amelio, and A. Fattorossi. 1992. Multiparametric flow cytometric analysis of the kinetics of surface molecule expression after polyclonal activation of human peripheral blood T lymphocytes. Scandinavian journal of immunology 35:439-447. Bukowski, J.F., I. Kurane, C.J. Lai, M. Bray, B. Falgout, and F.A. Ennis. 1989. Dengue virus-specific cross-reactive CD8+ human cytotoxic T lymphocytes. Journal of virology 63:5086-5091. Chen, H.C., F.M. Hofman, J.T. Kung, Y.D. Lin, and B.A. Wu-Hsieh. 2007. Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. Journal of virology 81:5518-5526. Fuhlbrigge, R.C., J.D. Kieffer, D. Armerding, and T.S. Kupper. 1997. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389:978-981. Grailer, J.J., M. Kodera, and D.A. Steeber. 2009. L-selectin: role in regulating homeostasis and cutaneous inflammation. Journal of dermatological science 56:141-147. Green, S., S. Pichyangkul, D.W. Vaughn, S. Kalayanarooj, S. Nimmannitya, A. Nisalak, I. Kurane, A.L. Rothman, and F.A. Ennis. 1999a. Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. The Journal of infectious diseases 180:1429-1435. Green, S., D.W. Vaughn, S. Kalayanarooj, S. Nimmannitya, S. Suntayakorn, A. Nisalak, R. Lew, B.L. Innis, I. Kurane, A.L. Rothman, and F.A. Ennis. 1999b. Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. The Journal of infectious diseases 179:755-762. Guzman, M.G., and G. Kouri. 2002. Dengue: an update. The Lancet infectious diseases 2:33-42. Halstead, S.B. 1979. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. The Journal of infectious diseases 140:527-533. Halstead, S.B., and E.J. O'Rourke. 1977. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265:739-741. Hawkes, R.A., and K.J. Lafferty. 1967. The enchancement of virus infectivity by antibody. Virology 33:250-261. Haynes, B.F., M.J. Telen, L.P. Hale, and S.M. Denning. 1989. CD44--a molecule involved in leukocyte adherence and T-cell activation. Immunology today 10:423-428. Henchal, E.A., and J.R. Putnak. 1990. The dengue viruses. Clinical microbiology reviews 3:376-396. Islam, S.A., D.S. Chang, R.A. Colvin, M.H. Byrne, M.L. McCully, B. Moser, S.A. Lira, I.F. Charo, and A.D. Luster. 2011. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nature immunology 12:167-177. Johnson, A.J., and J.T. Roehrig. 1999. New mouse model for dengue virus vaccine testing. Journal of virology 73:783-786. Johnson, P., A. Maiti, K.L. Brown, and R. Li. 2000. A role for the cell adhesion molecule CD44 and sulfation in leukocyte-endothelial cell adhesion during an inflammatory response? Biochemical pharmacology 59:455-465. Juffrie, M., G.M. Meer, C.E. Hack, K. Haasnoot, Sutaryo, A.J. Veerman, and L.G. Thijs. 2001. Inflammatory mediators in dengue virus infection in children: interleukin-6 and its relation to C-reactive protein and secretory phospholipase A2. The American journal of tropical medicine and hygiene 65:70-75. Katschke, K.J., Jr., J.B. Rottman, J.H. Ruth, S. Qin, L. Wu, G. LaRosa, P. Ponath, C.C. Park, R.M. Pope, and A.E. Koch. 2001. Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis and rheumatism 44:1022-1032. Koelle, D.M., Z. Liu, C.M. McClurkan, M.S. Topp, S.R. Riddell, E.G. Pamer, A.S. Johnson, A. Wald, and L. Corey. 2002. Expression of cutaneous lymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus. The Journal of clinical investigation 110:537-548. Kontny, U., I. Kurane, and F.A. Ennis. 1988. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells. Journal of virology 62:3928-3933. Kurane, I., B.L. Innis, S. Nimmannitya, A. Nisalak, A. Meager, and F.A. Ennis. 1993. High levels of interferon alpha in the sera of children with dengue virus infection. The American journal of tropical medicine and hygiene 48:222-229. Kurane, I., B.L. Innis, S. Nimmannitya, A. Nisalak, A. Meager, J. Janus, and F.A. Ennis. 1991. Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. The Journal of clinical investigation 88:1473-1480. Kurane, I., B.L. Innis, A. Nisalak, C. Hoke, S. Nimmannitya, A. Meager, and F.A. Ennis. 1989. Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production. The Journal of clinical investigation 83:506-513. Mairuhu, A.T., J. Wagenaar, D.P. Brandjes, and E.C. van Gorp. 2004. Dengue: an arthropod-borne disease of global importance. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 23:425-433. Mongkolsapaya, J., W. Dejnirattisai, X.N. Xu, S. Vasanawathana, N. Tangthawornchaikul, A. Chairunsri, S. Sawasdivorn, T. Duangchinda, T. Dong, S. Rowland-Jones, P.T. Yenchitsomanus, A. McMichael, P. Malasit, and G. Screaton. 2003. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nature medicine 9:921-927. Morimoto, Y., Y. Bian, P. Gao, Y. Yashiro-Ohtani, X.Y. Zhou, S. Ono, H. Nakahara, M. Kogo, T. Hamaoka, and H. Fujiwara. 2005. Induction of surface CCR4 and its functionality in mouse Th2 cells is regulated differently during Th2 development. Journal of leukocyte biology 78:753-761. Nimmannitya, S., S.B. Halstead, S.N. Cohen, and M.R. Margiotta. 1969. Dengue and chikungunya virus infection in man in Thailand, 1962-1964. I. Observations on hospitalized patients with hemorrhagic fever. The American journal of tropical medicine and hygiene 18:954-971. Pitzalis, C., A. Cauli, N. Pipitone, C. Smith, J. Barker, A. Marchesoni, G. Yanni, and G.S. Panayi. 1996. Cutaneous lymphocyte antigen-positive T lymphocytes preferentially migrate to the skin but not to the joint in psoriatic arthritis. Arthritis and rheumatism 39:137-145. Rigau-Perez, J.G., G.G. Clark, D.J. Gubler, P. Reiter, R.J. Sanders, and A.V. Vorndam. 1998. Dengue and dengue haemorrhagic fever. Lancet 352:971-977. Rook, A.H., and P. Heald. 1995. The immunopathogenesis of cutaneous T-cell lymphoma. Hematology/oncology clinics of North America 9:997-1010. Rossiter, H., F. van Reijsen, G.C. Mudde, F. Kalthoff, C.A. Bruijnzeel-Koomen, L.J. Picker, and T.S. Kupper. 1994. Skin disease-related T cells bind to endothelial selectins: expression of cutaneous lymphocyte antigen (CLA) predicts E-selectin but not P-selectin binding. European journal of immunology 24:205-210. Sabin, A.B. 1952. Research on dengue during World War II. The American journal of tropical medicine and hygiene 1:30-50. Sangkawibha, N., S. Rojanasuphot, S. Ahandrik, S. Viriyapongse, S. Jatanasen, V. Salitul, B. Phanthumachinda, and S.B. Halstead. 1984. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. American journal of epidemiology 120:653-669. Smalley, D.M., and K. Ley. 2005. L-selectin: mechanisms and physiological significance of ectodomain cleavage. Journal of cellular and molecular medicine 9:255-266. Srikiatkhachorn, A., A. Krautrachue, W. Ratanaprakarn, L. Wongtapradit, N. Nithipanya, S. Kalayanarooj, A. Nisalak, S.J. Thomas, R.V. Gibbons, M.P. Mammen, Jr., D.H. Libraty, F.A. Ennis, A.L. Rothman, and S. Green. 2007. Natural history of plasma leakage in dengue hemorrhagic fever: a serial ultrasonographic study. The Pediatric infectious disease journal 26:283-290; discussion 291-282. Thein, S., M.M. Aung, T.N. Shwe, M. Aye, A. Zaw, K. Aye, K.M. Aye, and J. Aaskov. 1997. Risk factors in dengue shock syndrome. The American journal of tropical medicine and hygiene 56:566-572. Vaughn, D.W., S. Green, S. Kalayanarooj, B.L. Innis, S. Nimmannitya, S. Suntayakorn, T.P. Endy, B. Raengsakulrach, A.L. Rothman, F.A. Ennis, and A. Nisalak. 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. The Journal of infectious diseases 181:2-9. Wu, S.J., C.G. Hayes, D.R. Dubois, M.G. Windheuser, Y.H. Kang, D.M. Watts, and D.G. Sieckmann. 1995. Evaluation of the severe combined immunodeficient (SCID) mouse as an animal model for dengue viral infection. The American journal of tropical medicine and hygiene 52:468-476. Yen, Y.T., H.C. Chen, Y.D. Lin, C.C. Shieh, and B.A. Wu-Hsieh. 2008. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. Journal of virology 82:12312-12324. Ziegler, S.F., F. Ramsdell, and M.R. Alderson. 1994. The activation antigen CD69. Stem Cells 12:456-465. Zivny, J., I. Kurane, A.M. Leporati, M. Ibe, M. Takiguchi, L.L. Zeng, M.A. Brinton, and F.A. Ennis. 1995. A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6939 | - |
| dc.description.abstract | 登革是世界上最為流行的疾病之一。依照其病徵可分為:登革熱(DF),出血性登革熱(DHF)和登革熱休克(DSS)。出血性登革熱(DHF)目前診斷的依據為血漿滲出(plasma leakage),血小板過低(throbocytopenia)和外部流血(bleeding)。感染登革病毒可能引發出血性登革熱(DHF),而研究顯示出血病例多數發生在登革二次感染的病人身上。目前對於登革二次感染,宿主體內的T細胞反應仍不甚清楚。
本實驗中,我利用實驗室建立的老鼠出血模式,觀察到老鼠感染後T細胞的活化。而且登革二次感染無論是同型或不同型病毒,比起登革一次感染都較多比例的細胞活化並且有較多產生細胞激素的T細胞產出現。老鼠二次感染後,腋窩淋巴結內CD4+ 和 CD8+ T細胞會表現CD69+, CD44hi 和 CD62Llow。此外腋窩淋巴結內的CD4+ 和 CD8+ T細胞也表現了CLA和CCR4,讓T細胞可以準備進入皮膚。實驗中我觀察到這些活化的現象主要出現在二次感染後第1天到第1.5天,而這些T細胞也在感染後第1.5天時,表現皮膚趨化因子CLA和CCR4。 在體外實驗中,我利用anti-CD3抗體刺激來觀察腋窩淋巴結內CD4+ 和 CD8+ T細胞表現細胞激素的能力。實驗結果顯示,二次感染老鼠有能力產生TNF-α的CD4+ 和 CD8+ T細胞都顯著高於一次感染老鼠,而二次感染老鼠產生IFN-γ的CD4+ T細胞雖顯著高於一次感染,但IFN-γ的CD8+ T細胞卻無顯著差異。 總結這些結果,我觀察到老鼠在皮下注射感染登革病毒後,腋窩淋巴結內T細胞會活化。而T細胞的活化主要發生在登革二次感染後第1天到第1.5天。在二次感染後第1.5天,病灶淋巴結內T細胞會表現皮膚趨化因子。另外,二次感染後老鼠病灶淋巴結內的T細胞比起一次感染有較多能產生TNF-α 和IFN-γ。這篇論文是首次使用登革出血老鼠模式研究病灶淋巴結T細胞表現皮膚趨化因子,或許這些結果可此解釋為何在皮下感染登革後,皮膚常為出血患處的原因。 | zh_TW |
| dc.description.abstract | Dengue is one of the most widely spread infectious diseases in the world. Dengue disease manifests different clinical symptoms which are categorized as: dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Dengue hemorrhagic fever is diagnosed as having plasma leakage, thrombocytopenia and hemorrhage manifestations including bleeding from nose and gum, skin hemorrhage and blood in vomits in addition to common DF symptoms. Although hemorrhage can develop in patients with primary DENV infection, greater percentage of patients who develop DHF experience secondary infection. The contribution of T cells to host response to DENV infection in secondary infection is still not well understood.
In this study, utilizing the hemorrhage mouse model our laboratory developed, I investigated T cell activation and cytokine production in mice infected with homotypic as well as heterotypic secondary DENV infections and compared to mice with primary infection. CD4+ and CD8+ T cell expressions of CD69+, CD44hi and CD62Llow were analyzed. In addition, CD4+ and CD8+ T cell expressions of CLA and CCR4, skin homing receptors, were also studied. Here, I found that CD4+ and CD8+ T cells in the brachial lymph nodes expressed activation phenotypes at as early as days 1-1.5 after secondary infection and the activated T cells expressed skin homing receptors. With plate-bound anti-CD3 antibody to restimulate brachial lymph node cells in vitro, I analyzed CD4+ and CD8+ T cell cytokine response. The results showed that there were higher percentages of TNF-α-producing CD4+ and CD8+ T cells in the lymph nodes of mice with secondary infection than that in mice with primary infection. There were higher percentages of IFN-γ-producing CD4+ but not CD8+ T cells in the lymph nodes of mice with secondary infection than that in mice with primary infection. In summary, the results together showed that draining lymph node T cells are activated after intradermal inoculation of DENV. T cell activation and expansion occur as early as days 1-1.5 after secondary infection. T cells in the draining lymph nodes also express skin homing receptors after secondary infections and higher percentages of them produced TNF-α and IFN-γ than in mice with primary infection. This is the first study utilizing hemorrhage mouse model to show that T cells in the draining lymph nodes express skin homing receptors, which could possibly explain why skin is the most prevalent site of hemorrhage manifestations after intradermal DENV inoculation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:21:45Z (GMT). No. of bitstreams: 1 ntu-101-R98449012-1.pdf: 2726084 bytes, checksum: f81a5b18b771c180f98c149c97f7bb52 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書....................................................................................................... i
誌謝.............................................................................................................................. ii 中文摘要....................................................................................................................... iii 英文摘要....................................................................................................................... iv 第一章 緒論................................................................................................................ 1 (一) 登革病毒與疾病 ........................................................................................... 2 (二) 登革病毒感染的動物模式 ........................................................................... 3 2.1已發展的動物模式................................................................................ 3 2.2 本實驗室發展的動物模式................................................................... 3 (三) 導致登革出血熱/登革休克症候群的相關假說 .......................................... 4 3.1 抗體依賴性增強作用........................................................................... 4 3.2 T cells 反應與登革感染的關係 ........................................................ 5 (四) T細胞的活化與趨化作用 ............................................................................ 6 4.1 T細胞的活化 ........................................................................................ 6 4.2 T細胞表現的皮膚組織趨化分子 ........................................................ 7 (五) 實驗動機與目的 ........................................................................................... 8 (六) 研究目標 ....................................................................................................... 8 第二章 材料與方法.................................................................................................... 9 (一) 實驗用老鼠 ................................................................................................. 10 (二) 病毒 ............................................................................................................. 10 2.1登革病毒.............................................................................................. 10 2.2 C6/36細胞繼代培養 ........................................................................... 10 2.3 登革病毒的培養................................................................................. 10 2.4 登革病毒活性測試............................................................................. 11 (三) 老鼠感染登革病毒 ..................................................................................... 11 (四) 抗體 ............................................................................................................. 11 (五) 溶液 ............................................................................................................. 12 (六) 化學藥劑和實驗器材 ................................................................................. 15 (七) 皮膚組織細胞激素測量-酵素連結免疫吸附分析法................................ 17 (八) 淋巴結細胞表面分子螢光染色 ............................................................... 18 (九) 胞內細胞激素染色 ..................................................................................... 18 (十) 統計方法 ..................................................................................................... 19 第三章 實驗結果...................................................................................................... 20 (一) 登革病毒二次感染引發老鼠嚴重出血 ..................................................... 21 (二) 登革病毒二次感後老鼠皮膚患處細胞激素表現量上升 ......................... 22 (三) 登革病毒感染引起老鼠周邊淋巴結內T細胞的增加 ............................ 22 (四) 登革病毒感染引起老鼠周邊淋巴結內T細胞表現活化因子 ................ 23 (五) 登革病毒二次感染後在周邊淋巴結內的T細胞會表現皮膚趨化分子 24 (六) 登革病毒感染後周邊淋巴結內的T細胞具有產生細胞激素的能力 .... 24 第四章 討論.............................................................................................................. 27 (一) 登革二次感染引起嚴重出血 ..................................................................... 28 (二) 感染後老鼠產生TNF和IFN-γ與出血的相關性 ................................... 29 (三) 二次感後T細胞活化與出血患處的關聯 ................................................ 29 (四) 活化T細胞表現CLA在疾病上的研究 .................................................. 30 (五) 結論 ............................................................................................................. 30 參考文獻...................................................................................................................... 32 圖表與說明.................................................................................................................. 37 圖表目錄 Figure1. Sequential infections of heterotypic DENV induce hemorrhage in immunocompetent mice ........................................................................... 38 Figure 2. IFN-γ and TNF-α levels in hemorrhage skin ............................................ 40 Figure 3. Increased T cells number in draining lymph node after DENV infection .. 42 Figure 4. Intradermal DENV infection induces draining lymph node T cell to express activation molecule ...................................................................................................... 44 Figure 5. Intradermal DENV infection induces local lymph node T cells to express skin homing receptors and recruit T cells to skin tissue. ............................................. 51 Figure 6. The frequencies of cytokine by DENV-specific CD4 and CD8 T cell in local lymph node of DENV infected mice. ......................................................................56 | |
| dc.language.iso | zh-TW | |
| dc.title | 探討小鼠在一次和二次登革感染後T細胞反應作用 | zh_TW |
| dc.title | T cells responses in primary and heterotypic secondary DENV infection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 繆希椿(Shi-Chuen Miaw),顧家綺(Chia-Chi Ku) | |
| dc.subject.keyword | 登革病毒,二次感染,小鼠模式, | zh_TW |
| dc.subject.keyword | Dengue virus,secondary infection,mouse model, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-02-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 2.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
