Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69399
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林長平
dc.contributor.authorHan-Pin Chengen
dc.contributor.author鄭涵嬪zh_TW
dc.date.accessioned2021-06-17T03:14:42Z-
dc.date.available2021-07-18
dc.date.copyright2018-07-18
dc.date.issued2018
dc.date.submitted2018-07-10
dc.identifier.citationAndres, F., Porri, A., Torti, S., Mateos, J., Romera-Branchat, M., Garcia-Martinez, J. L., Fornara, F., Gregis, V., Kater, M. M. & Coupland, G. 2014. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc. Natl. Acad. Sci. USA. 111:E2760-2769.
Bai, X., Correa, V. R., Toruno, T. Y., Ammar el, D., Kamoun, S. & Hogenhout, S. A. 2009. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol. Plant Microbe Interact. 22:18-30.
Bloor, S. J. & Abrahams, S. 2002. The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 59:343-346.
Boonrod, K., Munteanu, B., Jarausch, B., Jarausch, W. & Krczal, G. 2012. An immunodominant membrane protein (Imp) of 'Candidatus Phytoplasma mali' binds to plant actin. Mol. Plant Microbe Interact. 25:889-895.
Broun, P. 2005. Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr. Opin. Plant Biol. 8:272-279.
Cheng, J. Z., Zhou, Y. P., Lv, T. X., Xie, C. P. & Tian, C. E. 2017. Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol. Mol. Biol. Plants 23:477-485.
Daviere, J. M. & Achard, P. 2013. Gibberellin signaling in plants. Development (Cambridge, England) 140:1147-1151.
Dill, A. & Sun, T. 2001. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777-785.
Ding, Y., Wei, W., Wu, W., Davis, R. E., Jiang, Y., Lee, I. M., Hammond, R.W., Shen, L., Sheng, J. P. & Zhao, Y. 2013. Potato purple top phytoplasma‐induced disruption of gibberellin homeostasis in tomato plants. Ann. Appl. Biol.162:131-139.
Eckardt, N. A. 2007. GA Signaling: Direct targets of DELLA proteins. Plant Cell 19:2970.
Gould, K., McKelvin, J. & Markham, K. 2002. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 25:1261-1269.
Gou, J. Y., Felippes, F. F., Liu, C. J., Weigel, D. & Wang, J. W. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512-1522.
Guo, C., Xu, Y., Shi, M., Lai, Y., Wu, X., Wang, H., Zhu, Z., Poethig, R. S. & Wu, G. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. Plant Cell 29:1293-1304.
Himeno, M., Kitazawa, Y., Yoshida, T., Maejima, K., Yamaji, Y., Oshima, K. & Namba, S. 2014. Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants. Sci. Rep. 4:4111.
Hogenhout, S. A., Oshima, K., Ammar el, D., Kakizawa, S., Kingdom, H. N. & Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9:403-423.
Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y. & Namba, S. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc. Natl. Acad. Sci. USA. 106:6416-6421.
Hsieh, L. C., Lin, S. I., Shih, A. C. C., Chen, J. W., Lin, W. Y., Tseng, C. Y., Li, W. H. & Chiou, T. J. 2009. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151:2120-2132.
Kovinich, N., Kayanja, G., Chanoca, A., Otegui, M. S. & Grotewold, E. 2015. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. 10:e1027850.
Lee, I. M., D Bottner, K., Secor, G. & Rivera, V. 2006. ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. Int. J. Syst. Evol. Microbiol. 56:1593-7.
Lemoine, R., Camera, S. L., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J. L., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M., Girousse, C., Lemonnier, P., Parrilla, J. & Durand, M. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4:272.
Lepka, P., Stitt, M., Moll, E. & Seem ÜLler, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55:59-68.
Liu, C. T., Huang, H. M., Hong, S. F., Kuo-Huang, L. L., Yang, C. Y., Lin, Y. Y., Lin, C. P. & Lin, S. S. 2015. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development. Plant Signal. Behav. 10:e1107690.
Liu, L. Y., Tseng, H. I., Lin, C. P., Lin, Y. Y., Huang, Y. H., Huang, C. K., Chang, T. H. & Lin, S. S. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol. 55:942-957.
Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A. & Perata, P. 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol. 179:1004-1016.
MacLean, A. M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A. M., Angenent, G. C., Immink, R. G. & Hogenhout, S. A. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol. 12:e1001835.
Maejima, K., Oshima, K. & Namba, S. 2014a. Exploring the phytoplasmas, plant pathogenic bacteria. J. Gen. Plant Pathol. 80:210-221.
Maejima, K., Iwai, R., Himeno, M., Komatsu, K., Kitazawa, Y., Fujita, N., Ishikawa, K., Fukuoka, M., Minato, N., Yamaji, Y., Oshima, K. & Namba, S. 2014b. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant J. 78:541-554.
Mateos, J. L., Madrigal, P., Tsuda, K., Rawat, V., Richter, R., Romera-Branchat, M., Fornara, F., Schneeberger, K., Krajewski, P., & Coupland, G. 2015. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol. 16:31.
Maust, B. E., Espadas, F., Talavera, C., Aguilar, M., Santamaria, J. M. & Oropeza, C. 2003. Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976-981.
Mouradov, A., Cremer, F. & Coupland, G. 2002. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:111-130.
Nakabayashi, R., Kusano, M., Kobayashi, M., Tohge, T., Yonekura-Sakakibara, K., Kogure, N., Yamazaki, M., Kitajima, M., Saito, K. & Takayama, H. 2009. Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70:1017-1029.
Rogers, K. & Chen, X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383-2399.
Saito, N., Tatsuzawa, F., Nishiyama, A., Yokoi, M., Shigihara, A. & Honda, T. 1995. Acylated cyanidin 3-sambubioside-5-glucosides in Matthiola incana. Phytochemistry 38:1027-1032.
Shi, M. Z. & Xie, D. Y. 2014. Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis thaliana. Recent Pat. Biotechnol. 8: 47-60.
Smaczniak, C., Immink, R. G., Angenent, G. C. & Kaufmann, K. 2012. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:081-3098.
Su, Y. T. 2010. The correlation of symptom development in phyllody and virescence with gene expressions in floral organ identity and pigment synthesis and with phytoplasma accumulation in phytoplasma infected Catharanthus roseus. National Taiwan University. Master thesis.
Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M. & Hogenhout, S. A. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. USA. 108:E1254-E1263.
Tanaka, Y., Sasaki, N. & Ohmiya, A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54:733-749.
Tatsuzawa, F., Saito, N., Shinoda, K., Shigihara, A. & Honda, T. 2006. Acylated cyanidin 3-sambubioside-5-glucosides in three garden plants of the Cruciferae. Phytochemistry 67:1287-1295.
Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M. & Smeekens, S. 2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 139:1840-1852.
Teotia, S. & Tang, G. 2015. To bloom or not to bloom: Role of microRNAs in plant flowering. Mol. Plant. 8:359-377.
Tallis, M. J., Lin Y., Rogers, A., Zhang, J., Street, N. R., Miglietta, F., Karnosky, D. F., De Angelis, P., Calfapietra, C. & Taylor, G. 2010. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytol. 186:415-428.
Turck, F., Fornara, F., & Coupland, G. 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59:573-594.
Voinnet, O. 2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136:669-687.
Wang, J. W., Czech, B. & Weigel, D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738-749.
Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126:485-493.
Wu, G., Park, M. Y., Conway, S. R., Wang, J. W., Weigel, D. & Poethig, R. S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750-759.
Xu, M., Hu, T., Zhao, J., Park, M. Y., Earley, K. W., Wu, G., Yang, L. & Poethig, R. S. 2016. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS Genet. 12:e1006263.
Yang, C. Y. 2015. Phytoplasma PHYL1 effector induces abnormal flower phenotypes by interfering miR396/SVP regulation. National Taiwan University. Master thesis.
Yang, C. Y., Huang, Y. H., Lin, C. P., Lin, Y. Y., Hsu, H. C., Wang, C. N., Liu, L. Y., Shen, B. N. & Lin, S. S. 2015. MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the Phyllody Symptoms1 effector. Plant Physiol. 168:1702-1716.
Yang, L., Xu, M., Koo, Y., He, J. & Poethig, R.S. 2013. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. ELife. 2:e00260.
Yu, S., Galvao, V. C., Zhang, Y. C., Horrer, D., Zhang, T. Q., Hao, Y. H., Feng, Y. Q., Wang, S., Schmid, M. & Wang, J. W. 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell 24:3320-3332.
Yu, S., Cao, L., Zhou, C. M., Zhang, T. Q., Lian, H., Sun, Y., Wu, J., Huang, J., Wang, G. & Wang, J. W. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. ELife. 2:e00269.
Yu, Y. L., Yeh, K. W. & Lin, C. P. 1998. An antigenic protein gene of a phytoplasma associated with sweet potato witches' broom. Microbiology 144:1257-1262.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69399-
dc.description.abstract花生簇葉病菌質體 (peanut witches’ broom phytoplasma, PnWB) 感染日日春植物後,能導致植株葉片黃化、枝葉叢生,並藉由 Phyllody Symptoms1 (PHYL1) 效應蛋白引發花器葉化 (phyllody)。本實驗室在罹病日日春或 GFP-PHYL1 轉基因阿拉伯芥 (GFP-PHYL1 plant) 之葉化花 (leafy flower) 中,發現 microRNA396 (miR396) 的表現受到抑制,而受 miR396 調控的 SHORT VEGETATIVE PHASE (SVP) 則大量表現並引發花器葉化。本研究則發現 GFP-PHYL1 plant 在六週大植株中的葉化花有花青素累積的情形,同時即時反轉錄聚合酶連鎖反應 (real time RT-PCR) 結果顯示葉化花中的花青素生合成之酵素基因的表現有明顯上調。我們推測 PHYL1 能夠誘發植物的花青素累積。我們發現 GFP-PHYL1 plant中的 miR156 表現有上升,而受 miR156 調控的 SQUAMOSA PROMOTER INDING PROTEIN-LIKE (SPL) 基因家族表現則顯著下降。SPL9 在花青素生合成中扮演負調控的角色,葉化花中 miR156 表現上升所導致的 SPL9 下降是花青素累積的成因之一。此外吉貝素 (gibberellic acids; GAs) 能藉由活化 SPLs 來促進開花,然而 SVP 會抑制 GAs 的生合成。在 GFP-PHYL1 plants 中,miR396 下降所導致的 SVP 過表現,使植株無法產生足夠的 GAs 來活化 SPL9,進而導致花青素累積。除此之外,本研究發現花青素在葉化花的生成與醣類的累積有關,並且蔗糖能夠促進花青素生合成相關基因的表現。另外前人研究指出 PHYL1 蛋白在植物體中的表現不穩定,我們推測可能有其他的菌質體蛋白能與之結合並幫助其穩定結構。針對感染 PnWB 日日春之葉化花進行免疫沉澱 (immunoprecipitation),發現 PHYL1 可以和 PnWB effector 2 (PnE2) 直接交互作用,並且藉由 PnE2 間接地與 PnWB effector 1 (PnE1) 結合。根據胺基酸序列比對以及 signal peptide 的預測,PnE1 是未被報導過的效應蛋白,PnE2 則是嵌在菌質體細胞膜表面上的優勢免疫膜蛋白 (immunodominant membrane protein)。本研究發現 PHYL1 能干擾微型核酸 (microRNA) 的表現,間接地導致花青素累積於葉化花,此外也發現 PHYL1 能與兩個菌質體蛋白結合。我們認為花青素與醣類在葉化花的累積可能有利於菌質體的生存。zh_TW
dc.description.abstractPeanut witches’ broom phytoplasma (PnWB) infected-Catharanthus roseus plants showed leaf yellowing, witches’ broom, and phyllody (herein referred as leafy flower) symptoms. Our previous studies demonstrated that Phyllody Symptoms1 (PHYL1) of PnWB is the effector to trigger the microRNA396 (miR396) down-regulation, and subsequently up-regulate the miR396-targeted SHORT VEGETATIVE PHASE (SVP) for leafy flower formation in PnWB-infected C. roseus and transgenic Arabidopsis expressing green fluorescent protein (GFP)-PHYL1 fusion gene (GFP-PHYL1 plant). Moreover, we observed the anthocyanin accumulation in the leafy flowers and the gene expressions of anthocyanin pathway were up-regulated in 6-week-old GFP-PHYL1 plants. We speculate that PHYL1 have ability to induce anthocyanin accumulation. In addition, we found that the miR156 expression levels was up-regulated, and the gene expression levels of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes were down-regulated in the GFP-PHYL1 plant. SPL9 is a negative regulator of anthocyanin biosynthesis; therefore, the anthocyanin accumulation in leafy flowers is caused by the miR156-mediated SPL9 down-regulation. Furthermore, GAs activate the SPLs for flowering; however, SVP inhibit the GAs biosynthesis. Therefore, up-regulated SVP expression, which mediate by low miR396, represses gibberellic acids (GAs) biosynthesis in GFP-PHYL1 plants, resulting in inactivation of SPLs and consequence anthocyanin accumulation. In addition, previous study demonstrated that sucrose can induce expressions of anthocyanin biosynthetic genes. In addition, our results showed that sucrose was accumulated in leafy flower and triggered the anthocyanin biosynthesis. Moreover, our previous study indicated that PHYL1 is an unstable protein in vivo that might need the other bacterial protein(s) for stabilizing. The results of immunoprecipitation (IP) from leafy flowers of PnWB-infected C. roseus indicated that PnWB effector 2 (PnE2) directly interacts with PHYL1, whereas the PnWB effector 1 (PnE1) indirectly interacts with PHYL1 through the interaction with PnE2. According to the amino acid sequence alignment and signal peptide prediction, we found that PnE1 is a novel effector, and PnE2 is an immunodominant membrane protein which anchor on membrane of phytoplasma. In this study, we demonstrated that PHYL1-interfered miRNA expressions have indirectly effects on anthocyanin accumulation of leafy flowers and two bacterial proteins interact with PHYL1. We suggest that anthocyanin and the carbohydrate accumulate in leafy flower might benefit for phytoplasma survival.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:14:42Z (GMT). No. of bitstreams: 1
ntu-107-R05633008-1.pdf: 2706749 bytes, checksum: f1d2b20ce853c86ab798e2841fb8033c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract V
Contents VII
Introduction 1
Materials and Methods 9
Plant materials and growth conditions 9
Detection of anthocyanin 9
RNA extraction and real-time RT-PCR 10
Small RNA northern blot 11
Photosynthesis efficiency assay 11
Carbohydrate analysis 12
Plant hormone measurement 12
Recombinant protein purification and antiserum production 15
Western blot 17
In vivo co-immunoprecipitation assay 17
Results 19
GFP-PHYL1 plants exhibit leafy flower and purple top phenotypes 19
Up-regulation of anthocyanin genes in the leafy flower of GFP-PHYL1 plants 20
The miR156-SPLs regulation causes the up-regulation of anthocyanin genes 22
The carbohydrate content in flower of Col-0 and GFP-PHYL1 plant 23
Plant hormone production in flower of Col-0 and GFP-PHYL1 plants 25
Protein interaction between PHYL1, PnE1, and PnE2 26
Discussion 29
Anthocyanin accumulation in the leafy flowers of GFP-PHYL1 plants is mediated by SPL9 down-regulation 29
Additional regulated mechanism(s) for expressions of SPLs downstream genes in GFP-PHYL1 plants 30
Carbohydrate accumulation in leafy flower of GFP-PHYL1 plant resulting in purple top leafy flower 30
The PHYL1 effector interferes with the expressions of MIR genes 32
The role of PHYL1-PnE2-PnE1 interaction 33
Conclusions 35
References 36
Tables and Figures 45
Supplementary Tables and Figures 58
dc.language.isoen
dc.subject花生簇葉病菌質體zh_TW
dc.subjectPHYL1zh_TW
dc.subject頂端紫化zh_TW
dc.subject花青素生合成zh_TW
dc.subjectmiR156/SPL 調控zh_TW
dc.subjectmiR156/SPL regulationen
dc.subjectpeanut witches’ broom phytoplasmaen
dc.subjectPHYL1en
dc.subjectpurple topen
dc.subjectanthocyanin biosynthesisen
dc.title植物菌質體 PHYL1 效應蛋白干擾微型核酸調控引發花青素累積及 PHYL1 相互作用蛋白之研究zh_TW
dc.titleStudies of phytoplasma PHYL1 induced anthocyanin accumulation in miRNA regulation and its interacting proteinsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor林詩舜
dc.contributor.oralexamcommittee詹富智,陳仁治,王皓青
dc.subject.keyword花生簇葉病菌質體,PHYL1,頂端紫化,花青素生合成,miR156/SPL 調控,zh_TW
dc.subject.keywordpeanut witches’ broom phytoplasma,PHYL1,purple top,anthocyanin biosynthesis,miR156/SPL regulation,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201801367
dc.rights.note有償授權
dc.date.accepted2018-07-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved