請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69386
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖洺漢(Ming-Han Liao) | |
dc.contributor.author | Syu-Jhih Wei | en |
dc.contributor.author | 魏旭志 | zh_TW |
dc.date.accessioned | 2021-06-17T03:14:23Z | - |
dc.date.available | 2023-07-19 | |
dc.date.copyright | 2018-07-19 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-10 | |
dc.identifier.citation | 1. Shuji, N., M. Takashi, and S. Masayuki, High-Power GaN P-N Junction Blue-Light-Emitting Diodes. Japanese Journal of Applied Physics, 1991. 30(12A): p. L1998.
2. Hajime, O., Present Status and Future Prospect of Widegap Semiconductor High-Power Devices. Japanese Journal of Applied Physics, 2006. 45(10R): p. 7565. 3. Eastman, L.F. and U.K. Mishra, The toughest transistor yet [GaN transistors]. IEEE Spectrum, 2002. 39(5): p. 28-33. 4. Ambacher, O., et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics, 1999. 85(6): p. 3222-3233. 5. Kai, C., et al., AlGaN/GaN High Electron Mobility Transistors Grown on 150 mm Si(111) Substrates with High Uniformity. Japanese Journal of Applied Physics, 2008. 47(3R): p. 1553. 6. Boyd Adam, R., et al., Growth of GaN/AlGaN on 200 mm diameter silicon (111) wafers by MOCVD. physica status solidi c, 2009. 6(S2): p. S1045-S1048. 7. Lei, T., et al., Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon. Applied Physics Letters, 1991. 59(8): p. 944-946. 8. Powell, R.C., et al., Heteroepitaxial wurtzite and zinc‐blende structure GaN grown by reactive‐ion molecular‐beam epitaxy: Growth kinetics, microstructure, and properties. Journal of Applied Physics, 1993. 73(1): p. 189-204. 9. Kuznia, J.N., et al., Low pressure metalorganic chemical‐vapor deposition of cubic GaN over (100) GaAs substrates. Applied Physics Letters, 1994. 65(19): p. 2407-2409. 10. Daudin, B., et al., How to grow cubic GaN with low hexagonal phase content on (001) SiC by molecular beam epitaxy. Journal of Applied Physics, 1998. 84(4): p. 2295-2300. 11. Jun, W., et al., Crystal Structure of GaN Grown on 3C-SiC Substrates by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1997. 36(7R): p. 4241. 12. Zoroddu, A., et al., First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory. Physical Review B, 2001. 64(4): p. 045208. 13. Bernardini, F., V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B, 1997. 56(16): p. R10024-R10027. 14. Foutz, B.E., et al., Polarization Induced Charge at Heterojunctions of the III–V Nitrides and Their Alloys. physica status solidi (b), 1999. 216(1): p. 415-418. 15. Smorchkova, I.P., et al., Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics, 1999. 86(8): p. 4520-4526. 16. Hsu, L. and W. Walukiewicz, Effects of piezoelectric field on defect formation, charge transfer, and electron transport at GaN/AlxGa1−xN interfaces. Applied Physics Letters, 1998. 73(3): p. 339-341. 17. Ibbetson, J.P., et al., Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Applied Physics Letters, 2000. 77(2): p. 250-252. 18. Daele, B.V., et al., The role of Al on Ohmic contact formation on n-type GaN and AlGaN∕GaN. Applied Physics Letters, 2005. 87(6): p. 061905. 19. Ruvimov, S., et al., Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n‐GaN. Applied Physics Letters, 1996. 69(11): p. 1556-1558. 20. Wang, D.-F., et al., Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN. Journal of Applied Physics, 2001. 89(11): p. 6214-6217. 21. Lee, C.-T. and H.-W. Kao, Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN. Applied Physics Letters, 2000. 76(17): p. 2364-2366. 22. Kumar, V., et al., Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n–GaN. Journal of Applied Physics, 2002. 92(3): p. 1712-1714. 23. Greco, G., F. Iucolano, and F. Roccaforte, Ohmic contacts to Gallium Nitride materials. Applied Surface Science, 2016. 383: p. 324-345. 24. Liu, Q.Z., et al., Study of contact formation in AlGaN/GaN heterostructures. Applied Physics Letters, 1997. 71(12): p. 1658-1660. 25. Motayed, A., et al., Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN. Journal of Applied Physics, 2003. 93(2): p. 1087-1094. 26. Miura, N., et al., Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal. Solid-State Electronics, 2004. 48(5): p. 689-695. 27. Chang-Lee, C., Breakdown of overlapping-gate GaAs MESFETs. IEEE Transactions on Electron Devices, 1996. 43(4): p. 535-542. 28. Karmalkar, S. and U.K. Mishra, Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Transactions on Electron Devices, 2001. 48(8): p. 1515-1521. 29. Tan, W.S., et al., Comparison of different surface passivation dielectrics in AlGaN/GaN heterostructure field-effect transistors. Journal of Physics D: Applied Physics, 2002. 35(7): p. 595. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69386 | - |
dc.description.abstract | 本論文使用矽基板上成長氮化鋁鎵/氮化鎵之晶圓上製作高載子遷移率電晶體,在國家奈米實驗室開發適合於氮化鎵材料的製程條件,並於I-line stepper上開發閘極微縮製程使線寬突破機台限制,來讓元件性能往高頻率及高功率邁進。
閘極微縮製程裡使用MOSFET製程常見裡自對準技術裡的概念,將MOSFET中在閘極外壁所創造的側壁空間層引入我們所設計閘極區域的內壁,利用側壁空間蝕刻製程二次打開閘極區域,同使閘極線寬因內壁的側壁空間層的沉積引發閘極區域線寬的微縮。 本研究裡面分成四個時期,前三個時期為在國家奈米實驗室開發適合於氮化鎵材料的製程條件並穩定製程條件,第四個時期開始引進閘極微縮製程並成功製作出超越I-line stepper物理極限之線寬,成功製作出操作頻率大於20GHz且崩潰電壓大於100V的高頻高功率元件。 最終希望利用矽基板上成長氮化鋁鎵/氮化鎵的低成本優點達到商業化的可能性,閘極微縮製程的開發來讓元件能在有限的製程條件下達到最佳的電性表現,在降低成本的同時也有不俗的電性表現,進一步讓矽基板上成長氮化鋁鎵/氮化鎵之晶圓結合閘極微縮製程後,使此製程技術擁有商業化的本錢。 | zh_TW |
dc.description.abstract | In this paper, we fabricate high mobility electron-transistor transistors(HEMTs) on Al-GaN/GaN on Si wafer, and develop process for GaN material at the National Nano De-vice Laboratories. We develop a gate length reducing process that allowed the scale to break through the limitation of I-line stepper and let device performance toward higher frequencies and higher power.
Using the concept of common self-alignment technology in the MOSFET process for the gate length reducing process, the spacer sidewall is created in the outer wall of the gate of the MOSFET, but we make the inner spacer sidewall of gate region and control the second spacer etching process to open gate region and let the spacer sidewall can de-posit at the inner sidewall. The gate length is reduced by the inner spacer sidewall. The study was divided into four periods. During the first three periods, the process conditions for GaN materials were developed at the National Nano Device Laboratories and the process conditions were stabilized. In the fourth period, the gate length reducing process was introduced and successful fabricated the gate length through the limitation of I-line stepper. And the devices were fabricated with an operating frequency greater than 20 GHz and a breakdown voltage greater than 100V. finallly, it is hoped that AlGaN/GaN on Si wafer have the low-cost advantages to arrive the commercialization possibilities. And the development of gate length reducing process to allow device to achieve the best electrical performance in the limited process conditions. While reducing costs, it also has good electrical performance. Further, after the Al-GaN/GaN on Si wafer can combine with a gate length reducing process, let this process technology can have commercialization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:14:23Z (GMT). No. of bitstreams: 1 ntu-107-R05522627-1.pdf: 9119910 bytes, checksum: 2ed867661cb49e6f2d168d0fc505b5c8 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 碩士學位論文切結書 I
口試委員會審定書 II 致謝 III 中文摘要 IV ABSTRACT V 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 動機 3 1.3 論文架構 4 第二章 AlGaN/GaN HEMT 5 2.1 材料特性 6 2.1.1 晶體結構 6 2.1.2 自發性極化效應(Spontaneous polarization) 7 2.1.3 壓電極化效應(Piezoelectric polarization) 8 2.2 二維電子氣(2DEG) 9 2.3 金屬-半導體接面 11 2.3.1 歐姆接面(Ohmic contact) 11 2.3.2 蕭特基接面閘極(Schottky gate) 12 2.4 場效平板(Field plate) 13 2.5 鈍化層(Passivation) 13 2.6 接觸電阻量測 14 2.6.1 Transfer Length Method(TLM) 14 第三章 實驗規劃與步驟 16 3.1 實驗設計 16 3.2 基礎製程 21 3.2.1 清洗 21 3.2.2 微影 21 3.2.3 蝕刻 22 3.2.4 化學氣相沉積 22 3.2.5 金屬薄膜沉積 23 3.2.6 快速退火系統 24 3.2.7 離子佈植 24 3.3 實驗步驟 25 3.3.1 對準零層(Zero) 25 3.3.2 平台隔離(Mesa isolation) 27 3.3.3 歐姆接面(Ohmic contact) 28 3.3.4 TLM量測 29 3.3.5 閘極蝕刻(Gate etching) 30 3.3.6 側壁空間蝕刻(Spacer etching) 30 3.3.7 閘極金屬沉積(Gate metal) 31 3.3.8 開源極/汲極區域(Contact) 32 3.3.9 直流元件量測 33 3.3.10 外連金屬線(Thick metal) 34 3.3.11 高頻特性量測 35 第四章 結果與討論 36 4.1 第一代AlGaN/GaN HEMT 38 TLM 39 DC元件 40 斷面分析 42 結論 44 4.2 第二代AlGaN/GaN HEMT 44 製程改善 44 TLM 46 DC元件 49 斷面分析 51 結論 52 4.3 第三代AlGaN/GaN HEMT 53 製程改善 53 TLM 53 DC元件 55 斷面分析 57 結論 59 4.4 AlGaN/GaN HEMT之閘極微縮製程開發 59 斷面分析 60 DC元件 63 崩潰電壓 65 RF元件 66 結論 70 第五章 總結與未來展望 71 參考文獻 72 | |
dc.language.iso | zh-TW | |
dc.title | 高功率與高頻氮化鋁鎵/氮化鎵電晶體研製與閘極微縮製程開發 | zh_TW |
dc.title | The Fabrication of High-Power and High-Frequency AlGaN/GaN HEMTs and Development of Gate Length Reducing Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝明達,大藤徹,陳彥良 | |
dc.subject.keyword | 氮化鎵,二維電子氣,高載子遷移率電晶體,閘極微縮製程,側壁空間蝕刻,側壁空間,高頻元件,高功率元件, | zh_TW |
dc.subject.keyword | GaN,2DEG,HEMT,gate length reducing process,spacer etching,spacer sidewall,high frequency device,high power device, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201801429 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 8.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。