請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69377完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊烽正 | |
| dc.contributor.author | Chao-Yu Chen | en |
| dc.contributor.author | 陳昭瑜 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:14:10Z | - |
| dc.date.available | 2020-07-19 | |
| dc.date.copyright | 2018-07-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-11 | |
| dc.identifier.citation | Alvarez-Valdes, R., Belenguer, J. M., Benavent, E., Bermudez, J. D., Muñoz, F., Vercher, E., & Verdejo, F. (2016). Optimizing the level of service quality of a bike-sharing system. Omega, 62, 163-175.
Benchimol, M., Benchimol, P., Chappert, B., de la Taille, A., Laroche, F., Meunier, F., & Robinet, L. (2011). Balancing the stations of a self service “bike hire” system. RAIRO - Operations Research, 45(1), 37-61. Cao, E., & Lai, M. (2010). The open vehicle routing problem with fuzzy demands. Expert Systems with Applications, 37(3), 2405-2411. Chemla, D., Meunier, F., & Wolfler Calvo, R. (2013). Bike sharing systems: Solving the static rebalancing problem. Discrete Optimization, 10(2), 120-146. Dell'Amico, M., Hadjicostantinou, E., Iori, M., & Novellani, S. (2014). The bike sharing rebalancing problem: Mathematical formulations and benchmark instances. Omega, 45, 7-19. DeMaio, P., & MetroBike, L. (2009). Bike-sharing:History, impacts, models of provision, and future. Erdoğan, G., Battarra, M., & Wolfler Calvo, R. (2015). An exact algorithm for the static rebalancing problem arising in bicycle sharing systems. European Journal of Operational Research, 245(3), 667-679. Forma, I., Raviv, T., & Tzur, M. (2015). A 3-step math heuristic for the static repositioning problem in bike-sharing systems (Vol. 71). Hernández-Pérez, H., Rodríguez-Martín, I., & Salazar-González, J. J. (2009). A hybrid grasp/vnd heuristic for the one-commodity pickup-and-delivery traveling salesman problem. Computers & Operations Research, 36(5), 1639-1645. Hernández-Pérez, H., & Salazar-González, J.-J. (2004a). A branch-and-cut algorithm for a traveling salesman problem with pickup and delivery. Discrete Applied Mathematics, 145(1), 126-139. Hernández-Pérez, H., & Salazar-González, J.-J. (2004b). Heuristics for the one-commodity pickup-and-delivery traveling salesman problem. Transportation Science, 38(2), 245-255. Ho, S. C., & Szeto, W. Y. (2014). Solving a static repositioning problem in bike-sharing systems using iterated tabu search. Transportation Research Part E: Logistics and Transportation Review, 69, 180-198. Kara, I., & Bektas, T. (2006). Integer linear programming formulations of multiple salesman problems and its variations. European Journal of Operational Research, 174(3), 1449-1458. Li, F., Golden, B., & Wasil, E. (2007). A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 34(9), 2734-2742. Mladenović, N., Urošević, D., Hanafi, S. d., & Ilić, A. (2012). A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem. European Journal of Operational Research, 220(1), 270-285. Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery problems. Journal für Betriebswirtschaft, 58(1), 21-51. doi:10.1007/s11301-008-0033-7 Raff, S. (1983). Routing and scheduling of vehicles and crews: The state of the art. Computers & Operations Research, 10(2), 63-211. Rainer-Harbach, M., Papazek, P., Hu, B., & Raidl, G. R. (2013, 2013//). Balancing bicycle sharing systems: A variable neighborhood search approach. Paper presented at the Evolutionary Computation in Combinatorial Optimization, Berlin, Heidelberg. Vogel, P., Greiser, T., & Mattfeld, D. C. (2011). Understanding bike-sharing systems using data mining: Exploring activity patterns. Procedia - Social and Behavioral Sciences, 20, 514-523. 金, 龍. (2017). 時窗限制下單一共用財調配問題. (碩士), 國立臺灣大學, 台北市. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69377 | - |
| dc.description.abstract | 共用財共享系統因有需求不平準的問題,衍生出卡車繞行站點調配共用財以減少需求未滿足的問題。本研究即針對「時窗限制下單一共用財調配問題」研擬混合整數規劃求解法。期能透過數學規劃模型,求得問題的全域最佳解,協助系統營運者進行共用財調配減少需求未滿足量。在各站點共用財初始數及增減率已知下,根據繞行及調配規則逐一探討時窗內不同情境下的未滿足量的計算方式。本研究研擬本問題的單台及多台卡車混合整數線性規劃求解模型,透過此模型可求得卡車繞行各站點的最佳途程及在各站點調配的共用財數。除數學模型的研擬外並實作IBM ILOG CPLEX 的OPL(Optimization Programming Language)求解模型(程式),並以台北市單車共享系統中10至30個站點數為測試範例。試驗時以站點共用財增減率倍增、卡車容量倍增、及以多台卡車調配等不同情境下試驗未滿足量的調配效能。範例測試結果並與啟發式演算法比較。結果顯示各情境下,混整數規劃模型的求解結果均比啟發式演算法佳或相同。研擬的數學規劃模型限制式多且複雜,實作時另撰寫程式整理求得的最佳解以驗證解的正確性及展示繞行路徑圖。 | zh_TW |
| dc.description.abstract | This paper defines mixed-integer programming model which can solve time-windowed tool relocation problem. The decision maker can make an appropriate set-tlement and the unfulfilled amount in the public tool sharing system can be reduced by mixed-integer programming model. The model calculates the unfulfilled amount in the different case because of known increasing/decreasing rate and other parameters. The model determines the routing path, pickup and delivery amount in service stations. The general constraints are too complicated, so our research aims to develop a program to verify the correctness of the solutions and draw the routing path. Our research applies the model to the bike sharing system and use it to test some examples. If the truck in the bike sharing system transfer the bikes from stations to stations, the unfulfilled amount always declines. The performance of the mixed-integer is equal or better than the per-formance of canonical method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:14:10Z (GMT). No. of bitstreams: 1 ntu-107-R05546025-1.pdf: 1221167 bytes, checksum: 807bd4354f3bca2e3f31824a4c1f0af8 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 iii ABSTRACT iv 圖目錄 vii 表目錄 viii 1. 緒論 1 1.1. 研究背景及動機 1 1.2. 研究目的 2 1.3. 研究方法與流程 2 2. 文獻探討 4 2.1. 卡車繞行問題分類與比較 4 2.2. 旅行推銷員問題 5 2.3. 多台卡車旅行推銷員問題 6 2.4. One-Commodity Pickup-and-Delivery Traveling Salesman Problem(1-PDTSP) 7 2.5. 共用單車服務系統相關問題 7 2.6. 動態與靜態調配方法比較 8 2.7. 時窗內單一共用財調配問題 8 3. 時窗限制內共用財調配問題及整數規劃求解模式 11 3.1. 時窗限制內共用財調配問題 11 3.1.1. 問題描述與假設 11 3.1.2. 單台卡車混整數線性限制式規劃模型 28 3.1.3. 多台卡車混整數線性限制式規劃模型 45 4. 時窗限制內共用財調配問題的應用及求解測試 50 4.1. IBM ILOG CPLEX Optimization Studio 模型 50 4.2. 共用自行車範例測試及效能分析 50 4.2.1. 10個站點的單車共享系統範例測試 51 4.2.2. 20個站點的單車共享系統範例測試 53 4.2.3. 30個站點的單車共享系統範例測試 55 4.2.4. 數學求解模型參數值不同的情境測試 57 4.2.5. 卡車繞行結果模擬程式與細節資料展示 58 5. 結論與未來研究建議 60 5.1. 結論 60 5.2. 未來研究建議 60 參考文獻 62 附錄一 64 附錄二 66 附錄三 67 附錄四 68 附錄五 70 附錄六 71 附錄七 78 附錄八 93 附錄九 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 共享單車系統 | zh_TW |
| dc.subject | 共享經濟 | zh_TW |
| dc.subject | 混整數規劃法 | zh_TW |
| dc.subject | 時窗限制下單一共用財調配問題 | zh_TW |
| dc.subject | Time-Windowed Tool Relocation Problem | en |
| dc.subject | Bike sharing System | en |
| dc.subject | Mixed-Integer Programming | en |
| dc.subject | Sharing Economic | en |
| dc.title | 以混整數規劃求解時窗限制內單一共用財調配問題 | zh_TW |
| dc.title | Mathematical Programming Model for Solving the
Time-Windowed Tool Relocation Problem | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡瑞煌,胡黃德,周雍強 | |
| dc.subject.keyword | 共享經濟,共享單車系統,混整數規劃法,時窗限制下單一共用財調配問題, | zh_TW |
| dc.subject.keyword | Sharing Economic,Bike sharing System,Mixed-Integer Programming,Time-Windowed Tool Relocation Problem, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU201801435 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
