Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69363
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇(Guang-Yu Guo)
dc.contributor.authorChia-Ping Suen
dc.contributor.author蘇家平zh_TW
dc.date.accessioned2021-06-17T03:13:49Z-
dc.date.available2018-07-19
dc.date.copyright2018-07-19
dc.date.issued2018
dc.date.submitted2018-07-11
dc.identifier.citation[1] J. Heber, “Enter the oxides,” Nature 459, 28 (2009).
[2] J. Mannhart and D. G. Schlom, “Oxide interfaces-an opportunity for electronics,” Science 327, 1607 (2010).
[3] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, “Emergent phenomena at oxide interfaces,” Nat. Mater. 11, 103 (2012).
[4] P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J. M. Triscone, “Interface physics in complex oxide heterostructures,” Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
[5] M. Breitschaft, V. Tinkl, N. Pavlenko, S. Paetel, C. Richter, J. R. Kirtley, Y. C. Liao, G. Hammerl, V. Eyert, T. Kopp, and J. Mannhart, “Two-dimensional electron liquid state at LaAlO3-SrTiO3 interfaces,” Phys. Rev. B 81, 153414 (2010).
[6] W. J. Son, E. Cho, B. Lee, J. Lee, and S. Han, “Density and spatial distribution of charge carriers in the intrinsic n-type LaAlO3-SrTiO3 interface,” Phys. Rev. B 79, 245411 (2009).
[7] S. A. Chambers, “Epitaxial growth and properties of doped transition metal and complex oxide films,” Adv. Mater. 22, 219 (2010).
[8] Y. Tokura and N. Nagaosa, “Orbital physics in transition-metal oxides,” Science 288, 462 (2000).
[9] A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface,” Nature 427, 423 (2004).
[10] N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, “Superconducting interfaces between insulating oxides,” Science 317, 1196 (2007).
[11] A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, “Magnetic effects at the interface between non-magnetic oxides,” Nat. Mater. 6, 493 (2007).
[12] J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, “Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface,” Nature Physics 7, 767 (2011).
[13] C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, “Nanoscale control of an interfacial metal–insulator transition at room temperature,” Nat. Mater. 7, 298 (2008).
[14] A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, “Electric field control of the LaAlO3/SrTiO3 interface ground state,” Nature 456, 624 (2008).
[15] S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, “Tunable quasi-two-dimensional electron gases in oxide heterostructures,” Science 313, 1942 (2006).
[16] M. Basletic, J. L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, É. Jacquet, K. Bouzehouane, S. Fusil, and A. Barthélémy, “Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures,” Nat. Mater. 7, 621 (2008).
[17] N. Nakagawa, H. Y. Hwang, and D. A. Muller, “Why some interfaces cannot be sharp,” Nat. Mater. 5, 204 (2006).
[18] S. A. Pauli, S. J. Leake, B. Delley, M. Björck, C. W. Schneider, C. M. Schlepütz, D. Martoccia, S. Paetel, J. Mannhart, and P. R. Willmott, “Evolution of the interfacial structure of LaAlO3 on SrTiO3,” Phys. Rev. Lett. 106, 036101 (2011).
[19] G. Singh-Bhalla, C. Bell, J. Ravichandran, W. Siemons, Y. Hikita, S. Salahuddin, A. F. Hebard, H. Y. Hwang, and R. Ramesh, “Built-in and induced polarization across LaAlO3/SrTiO3 heterojunctions,” Nature Physics 7, 80 (2011).
[20] R. Pentcheva and W. E. Pickett, “Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3 (001) through polar distortion,” Phys. Rev. Lett. 102, 107602 (2009).
[21] M. L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C. W. Schneider, S. Gariglio, Ph. Ghosez, J. M. Triscone, and P. R. Willmott, “Tunable conductivity threshold at polar oxide interfaces,” Nat. Commun. 3, 932 (2012).
[22] H. Chen, A. M. Kolpak, and S. Ismail-Beigi, “Fundamental asymmetry in interfacial electronic reconstruction between insulating oxides: An ab initio study,” Phys. Rev. B 79, 161402 (2009).
[23] R. Pentcheva, M. Huijben, K. Otte, W. E. Pickett, J. E. Kleibeuker, J. Huijben, H. Boschker, D. Kockmann, W. Siemons, G. Koster, H. J. W. Zandvliet, G. Rijnders, D. H. A. Blank, H. Hilgenkamp, and A. Brinkman, “Parallel electron-hole bilayer conductivity from electronic interface reconstruction,” Phys. Rev. Lett. 104, 166804 (2010).
[24] P. W. Lee, V. N. Singh, G. Y. Guo, H. J. Liu, J. C. Lin, Y. H. Chu, C. H. Chen, and M. W. Chu, “Hidden lattice instabilities as origin of the conductive interface between insulating LaAlO3 and SrTiO3,” Nat. Commun. 7, 12773 (2016).
[25] H. Lee, N. Campbell, J. Lee, T. J. Asel, T. R. Paudel, H. Zhou, J. W. Lee, B. Noesges, J. Seo, B. Park, L. J. Brillson, S. H. Oh, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, “Direct observation of a two-dimensional hole gas at oxide interfaces,” Nat. Mater. 17, 231 (2018).
[26] R. Yamamoto, C. Bell, Y. Hikita, H. Y. Hwang, H. Nakamura, T. Kimura, and Y. Wakabayashi, “Structural comparison of n-type and p-type LaAlO3/SrTiO3 interfaces,” Phys. Rev. Lett. 107, 036104 (2011).
[27] Z. Zhong, P. X. Xu, and P. J. Kelly, “Polarity-induced oxygen vacancies at LaAlO3/SrTiO3 interfaces,” Phys. Rev. B 82, 165127 (2010).
[28] W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, “Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping,” Phys. Rev. Lett. 98, 196802 (2007).
[29] P. R. Willmott, S. A. Pauli, R. Herger, C. M. Schlepütz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, “Structural basis for the conducting interface between LaAlO3 and SrTiO3,” Phys. Rev. Lett. 99, 155502 (2007).
[30] C. Cantoni, J. Gazquez, F. M. Granozio, M. P. Oxley, M. Varela, A. R. Lupini, S. J. Pennycook, C. Aruta, U. S. di Uccio, P. Perna, and D. Maccariello, “Electron transfer and ionic displacements at the origin of the 2D electron gas at the LAO/STO interface: direct measurements with atomic-column spatial resolution,” Adv. Mater. 24, 3952 (2012).
[31] C. P. Chang, M. W. Chu, H. T. Jeng, S. L. Cheng, J. G. Lin, J. R. Yang, and C. H. Chen, “Condensation of two-dimensional oxide-interfacial charges into onedimensional electron chains by the misfit-dislocation strain field,” Nat. Commun. 5, 3522 (2014).
[32] C. P. Chang, J. G. Lin, H. T. Jeng, S. L. Cheng, W. F. Pong, Y. C. Shao, Y. Y. Chin, H. J. Lin, C. W. Chen, J. R. Yang, C. H. Chen, and M. W. Chu, “Atomic-scale observation of a graded polar discontinuity and a localized two-dimensional electron density at an insulating oxide interface,” Phys. Rev. B 87, 075129 (2013).
[33] E. Abe and A. P. Tsai, “Structure of quasicrystals studied by atomic-resolution electron microscopy,” JEOL News 36, 18 (2001).
[34] S. J. Pennycook, M. F. Chisholm, Y. Yan, G. Duscher, and S. T. Pantelides, “A combined experimental and theoretical approach to grain boundary structure and segregation,” Physica B 273, 453 (1999).
[35] N. Tanaka, “Scanning transmission electron microscopy of nanomaterials: Basics of imaging and analysis,” (2014).
[36] P. D. Nellist and S. J. Pennycook, “The principles and interpretation of annular darkfield Z-contrast imaging,” Adv. Imaging Electron Phys. 113, 147 (2000).
[37] K. Ishizuka, “A practical approach for STEM image simulation based on the FFT multislice method,” Ultramicroscopy 90, 71 (2002).
[38] K. Watanabe, T. Yamazaki, I. Hashimoto, and M. Shiojiri, “Atomic-resolution annular dark-field STEM image calculations,” Phys. Rev. B 64, 115432 (2001).
[39] D. A. Muller, “Structure and bonding at the atomic scale by scanning transmission electron microscopy,” Nat. Mater. 8, 263 (2009).
[40] K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, and K. Ishizuka, “Elementselective imaging of atomic columns in a crystal using STEM and EELS,” Nature 450, 702 (2007).
[41] “Gatan stempack spectrum imaging : http://www.gatan.com/techniques/spectrumimaging,”.
[42] J. H. Ngai, F. J. Walker, and C. H. Ahn, “Correlated oxide physics and electronics,” Annu. Rev. Mater. Res. 44, 1 (2014).
[43] Y. Y. Pai, A. Tylan-Tyler, P. Irvin, and J. Levy, “Physics of SrTiO3-based heterostructures and nanostructures: a review,” Rep. Prog. Phys. 81, 036503 (2018).
[44] P. L. Galindo, S. Kret, A. M. Sanchez, J. Y. Laval, A. Yáñez, J. Pizarro, E. Guerrero, T. Ben, and S. I. Molina, “The peak pairs algorithm for strain mapping from HRTEM images,” Ultramicroscopy 107, 1186 (2007).
[45] D. Kan, R. Aso, R. Sato, M. Haruta, H. Kurata, and Y. Shimakawa, “Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide,” Nat. Mater. 15, 432 (2016).
[46] N. Ganguli and P. J. Kelly, “Tuning ferromagnetism at interfaces between insulating perovskite oxides,” Phys. Rev. Lett. 113, 127201 (2014).
[47] R. L. Johnson-Wilke, D. Marincel, S. Zhu, M. P. Warusawithana, A. Hatt, J. Sayre, K. T. Delaney, R. Engel-Herbert, C.M. Schlepütz, J.W. Kim, V. Gopalan, N. A. Spaldin, D. G. Schlom, P. J. Ryan, and S. Trolier-McKinstry, “Quantification of octahedral rotations in strained LaAlO3 films via synchrotron x-ray diffraction,” Phys. Rev. B 88, 174101 (2013).
[48] M. Stengel, “First-principles modeling of electrostatically doped perovskite systems,” Phys. Rev. Lett. 106, 136803 (2011).
[49] C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fete, S. J. Leake, S. A. Pauli, P. R. Willmott, M. Stengel, Ph. Ghosez, and J. M. Triscone, “Electrostriction at the LaAlO3/SrTiO3 interface,” Phys. Rev. Lett. 107, 056102 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69363-
dc.description.abstract在過渡金屬氧化物之鋁酸鑭(LAO)與鈦酸鍶(STO)異質介面發現二維電子氣存在後,介面上獨特的物理性質接連被發現。近來又發現若於LAO/STO雙層結構之上再覆蓋STO後,上下介面處分別會累積二維電洞氣與二維電子氣。然而,對於此介面累積二維電子氣的成因仍舊尚未明確,更何況二維電洞氣。此研究將系統性地探討上下介面的異同之處與上層STO所扮演的角色。我們利用掃描穿透式電子顯微鏡搭配電子能量損失能譜,以具有原子級解析度的影像與能譜從微觀的角度研究此三層超晶格結構材料。由原子晶格結構的變化與化學成分組成比例的變動,推斷出於每層單位晶格中的電荷載子分布與內建極化場大小。進而指出極化不連續理論與介面累積電荷並無顯著的關聯,而是上下介面兩側分別所具有的尾對尾及頭對頭的內建極化場誘使二維電洞氣與二維電子氣聚積於介面處。在發現單一種過渡金屬氧化物異質介面可共同存有二維電洞氣與二維電子氣的現象之後,必然可繼續挖掘出背後所隱含更多新奇的物理現象與其應用之處。zh_TW
dc.description.abstractThe discovery of the two-dimensional electron gas (2DEG) at the heterointerface between transition metal oxides, LaAlO3(LAO) and SrTiO3(STO), has led to further observation of a number of emergent electronic properties. The capping of an additional STO layer on the LAO/STO gives rise to the onset of the two-dimensional hole gas (2DHG) and 2DEG on the top and bottom interfaces, respectively. However, the extensive studies on the origin of the 2DEG why there should be the 2DEG remain ambiguous, not to mention the origin of the 2DHG. Here, we present a systematic investigation on the interfaces and the role of the STO-capped layer. We resolve this long-standing puzzle through atomically resolved images and spectrums using scanning transmission electron microscopy in conjunction with electron energy-loss spectroscopy. Based on the atomic-scale chemical and structural scrutinization, the charge distributions and the lattice polarizations across the interfaces can be resolved in a layer-by-layer manner. Notably, the results indicate that polar catastrophe has no significant impact on the formation of the 2DHG and 2DEG and the interfaces are decorated by tail-to-tail and head-to-head ferroelectric-like polarizations across the respective top and bottom interfaces. The coexistence of the 2DHG and 2DEG in a single oxide heterostructure may open the avenue to the novel interfacial phenomena by design.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:13:49Z (GMT). No. of bitstreams: 1
ntu-107-R05222061-1.pdf: 38447290 bytes, checksum: 2caa1fd83e20d0594200bebd73c8537b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
第一章序論與研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 複雜氧化物異質介面. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 LaAlO3/SrTiO3 異質介面. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 相關文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 介面之二維電子氣成因探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2.1 極化不連續導致電荷的重新分布. . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2.2 類鐵電性之結構扭曲與頭對頭極化場. . . . . . . . . . . . . . . . . . . . . . 6
1.2.2.3 其它可能機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第二章實驗儀器原理介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 掃描穿透式電子顯微鏡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 儀器簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 影像成像機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2.1 同調與非同調影像. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2.2 高角度環狀暗場像. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 電子能量損失能譜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 儀器簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 原子級能譜影像. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
第三章SrTiO3/LaAlO3/SrTiO3 氧化物異質介面. . . . . . . . . . . . . . . . . . . . . .21
3.1 晶格結構伸縮與晶格中心原子偏心位移. . . . . . . . . . . . . . . . . . . . . . . 22
3.2 原子價數與化學成分組成比例. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 電荷分布與內建極化場. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
第四章結論與未來期望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
附錄原子位移計算軟體使用方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
dc.language.isozh-TW
dc.subject掃描穿透式電子顯微鏡zh_TW
dc.subject電子能量損失能譜zh_TW
dc.subject氧化物異質介面zh_TW
dc.subject鋁酸鑭zh_TW
dc.subject鈦酸鍶zh_TW
dc.subject極化場zh_TW
dc.subjectpolarizationen
dc.subjectoxide heterointerfaceen
dc.subjectscanning transmission electron microscopyen
dc.subjectelectron energy-loss spectroscopyen
dc.subjectLaAlO3en
dc.subjectSrTiO3en
dc.title利用掃描穿透式電子顯微鏡結合電子能量損失能譜於SrTiO3/LaAlO3/SrTiO3氧化物異質介面之研究zh_TW
dc.titleStudy of SrTiO3/LaAlO3/SrTiO3 Oxide Heterointerface by Scanning Transmission Electron Microscopy Combined with Electron Energy-Loss Spectroscopyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor朱明文(Ming-Wen Chu)
dc.contributor.oralexamcommittee李偉立(Wei-Li Lee)
dc.subject.keyword掃描穿透式電子顯微鏡,電子能量損失能譜,氧化物異質介面,鋁酸鑭,鈦酸鍶,極化場,zh_TW
dc.subject.keywordscanning transmission electron microscopy,electron energy-loss spectroscopy,oxide heterointerface,LaAlO3,SrTiO3,polarization,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201801217
dc.rights.note有償授權
dc.date.accepted2018-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
37.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved