Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥甫(Yan-Fu Kuo)
dc.contributor.authorYi-Hsiang Wangen
dc.contributor.author王奕翔zh_TW
dc.date.accessioned2021-06-17T03:13:42Z-
dc.date.available2023-07-19
dc.date.copyright2018-07-19
dc.date.issued2018
dc.date.submitted2018-07-11
dc.identifier.citationAdams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5-16.
Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE transactions on pattern analysis and machine intelligence, 33(5), 898-916.
Coomes, D. A., Heathcote, S., Godfrey, E. R., Shepherd, J. J., & Sack, L. (2008). Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters, 4(3), 302-306.
De Groote, I., Lockwood, C. A., & Aiello, L. C. (2010). A new method for measuring long bone curvature using 3D landmarks and semi‐landmarks. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists, 141(4), 658-664.
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271.
Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. Paper presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention.
Garland, M., & Shaffer, E. (2002). A multiphase approach to efficient surface simplification. Paper presented at the Visualization, 2002. VIS 2002. IEEE.
He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., & Chao, Y. (2017). The connected-component labeling problem: A review of state-of-the-art algorithms. Pattern Recognition, 70, 25-43.
Heckbert, P. S., & Garland, M. (1999). Optimal triangulation and quadric-based surface simplification. Comput. Geom., 14(1-3), 49-65.
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1993). Mesh optimization. Paper presented at the Proceedings of the 20th annual conference on Computer graphics and interactive techniques.
Jiao, X., & Heath, M. T. (2002). Feature detection for surface meshes. Paper presented at the Proceedings of 8th international conference on numerical grid generation in computational field simulations.
Jorgensen, S. M., Demirkaya, O., & Ritman, E. L. (1998). Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. American Journal of Physiology-Heart and Circulatory Physiology, 275(3), H1103-H1114.
Klingenberg, C. P. (2010). Evolution and development of shape: integrating quantitative approaches. Nature Reviews Genetics, 11(9), 623.
Lawing, A. M., & Polly, P. D. (2010). Geometric morphometrics: recent applications to the study of evolution and development. Journal of Zoology, 280(1), 1-7.
Lee, T. C., Kashyap, R. L., & Chu, C. N. (1994). Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms. CVGIP: Graphical Models and Image Processing, 56(6), 462-478.
Lefkimmiatis, S., Bourquard, A., & Unser, M. (2012). Hessian-based norm regularization for image restoration with biomedical applications. IEEE Transactions on Image Processing, 21(3), 983-995.
Lien, C. Y., Huang, C. C., Chen, P. Y., & Lin, Y. F. (2013). An efficient denoising architecture for removal of impulse noise in images. IEEE Transactions on Computers, 62(4), 631-643.
Mathieu, P., Alain, C., Rodolphe, S., Geoffrey, K., & Vincent, S. (2003). Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS. American journal of botany, 90(3), 445-460.
McElrone, A. J., Choat, B., Parkinson, D. Y., MacDowell, A. A., & Brodersen, C. R. (2013). Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature. Journal of visualized experiments: JoVE(74).
Pauly, M., Gross, M., & Kobbelt, L. P. (2002). Efficient simplification of point-sampled surfaces. Paper presented at the Proceedings of the conference on Visualization'02.
Perret, M., Chautems, A., Spichiger, R., Barraclough, T. G., & Savolainen, V. (2007). The geographical pattern of speciation and floral diversification in the Neotropics: the tribe Sinningieae (Gesneriaceae) as a case study. Evolution: International Journal of Organic Evolution, 61(7), 1641-1660.
Rhodes, J., Ford, T. P., Lynch, J., Liepins, P., & Curtis, R. (1999). Micro‐computed tomography: a new tool for experimental endodontology. International Endodontic Journal, 32(3), 165-170.
Riccabona, M., Nelson, T. R., Pretorius, D. H., & Davidson, T. E. (1995). Distance and volume measurement using three‐dimensional ultrasonography. Journal of ultrasound in medicine, 14(12), 881-886.
Ritman, E. L. (2004). Micro-computed tomography—current status and developments. Annu. Rev. Biomed. Eng., 6, 185-208.
SanMartin-Gajardo, I., & Sazima, M. (2004). Non-Euglossine bees also function as pollinators of Sinningia species (Gesneriaceae) in southeastern brazil. Plant Biol (Stuttg), 6(4), 506-512.
Sanmartin-Gajardo, I., & Sazima, M. (2005). Espécies de Vanhouttea Lem. e Sinningia Nees (Gesneriaceae) polinizadas por beija-flores: interações relacionadas ao hábitat da planta e ao néctar. Brazilian Journal of Botany, 28, 441-450.
Sun, Y., Page, D. L., Paik, J. K., Koschan, A., & Abidi, M. A. (2002). Triangle mesh-based edge detection and its application to surface segmentation and adaptive surface smoothing. Paper presented at the Image Processing. 2002. Proceedings. 2002 International Conference on.
Takeda, H., Farsiu, S., & Milanfar, P. (2006). Kernel regression for image processing and reconstruction.
Vincent, L. (1993). Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, 2(2), 176-201.
Wan, S.-Y., Kiraly, A. P., Ritman, E. L., & Higgins, W. E. (2000). Extraction of the hepatic vasculature in rats using 3-D micro-CT images. IEEE Transactions on medical imaging, 19(9), 964-971.
Wang, C.-N., Hsu, H.-C., Wang, C.-C., Lee, T.-K., & Kuo, Y.-F. (2015). Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers. Frontiers in plant science, 6, 724.
Wason, J. W., Huggett, B. A., & Brodersen, C. R. (2017). MicroCT imaging as a tool to study vessel endings in situ. American journal of botany, 104(9), 1424-1430.
Watanabe, K., & Belyaev, A. G. (2001). Detection of salient curvature features on polygonal surfaces. Paper presented at the Computer Graphics Forum.
Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: a primer: Academic Press.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69358-
dc.description.abstract花冠裂片形狀的變化對於研究人員是一項有趣的主題,花冠三維影像完整地保留下花朵型態資訊,對於後續花瓣裂片的差異性研究提供了最完整狀態的花瓣資料。現階段標記花朵三維形狀特徵的主流方法為Landmarks,然而標記的過程需要高度的專注且十分仰賴研究人員的判斷。本研究提出一種自動偵測方法,目的在於從三維花冠影像中偵測花瓣的一級維管束與邊緣輪廓,並且檢視花瓣形狀是否與不同傳粉者存在關聯性;本研究中,共收集了130個樣本,這些樣本來自於28種不同的岩桐屬物種;偵測流程分別為使用高斯海森矩陣與戴克斯特拉演算法進行一級維管束位置的偵測,以及利用向量強度與平滑化描繪花瓣輪廓;一級維管束與花瓣輪廓的組合作為花朵的形狀特徵,用以描述花瓣的形狀多樣性;本實驗測試結果的成功率為86.54%,兩種不同性質的花朵特徵被提出用以量化和瞭解花瓣形狀與傳粉者的關聯性,花瓣裂片的形狀顯著地影響傳粉者的選擇,蜂鳥傳粉的花朵品系,發展出細長的花冠筒藉以過濾蜂鳥之外的傳粉者,而蜜蜂傳粉的花系,花冠開口方向向上藉此迎合蜜蜂;為了檢測本研究所提出的自動化方法是否適用於其他新鮮合瓣花品系,使用了三種岩桐屬之外的樣本進行測試。與現有方法進行比較,本研究提出一種新穎的方法用於辨識花朵三維形狀特徵。zh_TW
dc.description.abstractCorolla shape variation is an interesting theme for researchers. Three-dimensional (3D) images of corollas retain genuine information of the corollas and are optimum for studying corolla shape variation. However, labeling landmarks, which define the shape of a corolla, in a 3D image is labor-intensive. This study proposed a method to automatically detect the first-order veins and corolla contours in 3D corolla images. This study also examines the relationship between corolla shapes and pollinators for genus Sinningia. In the study, 3D images of 130 specimens from 28 species of the genus Sinningia were collected. Procedures were then developed to detect the first-order veins of the corollas using Hessian of Gaussian and Dijkstra’s algorithm and to detect the corolla contours using vector harmony and smoothing. The diversity of corolla shape was represented by means of first-order veins and corolla contour. The successful detection rate reached 86.54%. Two traits, contour-vein ratio and corolla angle, were defined and quantified from the first-order veins and corolla contours to realize the relationship between corolla shapes and pollinators. A choice of pollinators was certainly affected by the shape of a flower. Ornithophily species developed corollas with straight and narrow tubes to sift pollinators other than hummingbirds. Melittophily species developed corollas with a lobe that bends upward to cater to bees. The proposed method was also tested on species other than subtribe Ligeriinae (e.g., A. miresa, S. saxorum, and D. tamiana) to show the applicability to fresh sympetalous flowers. This study brought a new method for identifying flower features in 3D space compared with the existing approaches.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:13:42Z (GMT). No. of bitstreams: 1
ntu-107-R05631023-1.pdf: 5304875 bytes, checksum: 24ffb51bb6f44a7de96b160ec7e8c8f6 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Objectives 1
1.3 Organization 2
CHAPTER 2. LITERATURE REVIEW 3
2.1 Micro-computed tomography 3
2.2 Geometric morphometrics 3
2.3 Three-dimensional Contour 4
2.4 Diversification of flower shape 4
CHAPTER 3. MATERIALS AND METHODS 6
3.1 Flower materials 6
3.2 Floral image acquisition 6
3.3 Volumetric image generation 6
3.4 Surface image generation 7
3.5 Automatic Identification of vascular bundles from volumetric images 8
3.5.1 Venation detection 8
3.5.2 First-order veins 10
3.6 Automatic Identification of corolla contour from surface images 11
3.6.1 Identification of initial corolla contour nodes 11
3.6.2 Noise removal and smoothing 13
3.7 Morphological traits 14
CHAPTER 4. RESULTS 16
4.1 Image volume and file size 16
4.2 Detection of the first-order veins and corolla contour 16
4.3 Morphological traits 21
CHAPTER 5. DISCUSSION 25
5.1 Failure case discussion 25
5.2 Applicability to tissues fixed in alcohol solution 26
5.3 Applicability to other species 27
CHAPTER 6. CONCLUSION 28
REFERENCES 29
APPENDIX 34
dc.language.isoen
dc.subject授粉綜合特徵zh_TW
dc.subject花冠輪廓zh_TW
dc.subject岩桐屬zh_TW
dc.subject花朵特徵zh_TW
dc.subject三維影像zh_TW
dc.subject一級維管束zh_TW
dc.subjectSinningiaen
dc.subjectFloral traitsen
dc.subjectFirst-order veinsen
dc.subjectCorolla contoursen
dc.subjectPollination syndromeen
dc.subjectThree-dimensional imageen
dc.title在三維花卉影像中自動偵測維管束和花冠輪廓zh_TW
dc.titleAutomatic Detection of Vascular Bundles and Corolla Contour in 3D Floral Imageen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳香君(Hsiang-Chun Chen),張維正(Wei-Cheng Chang)
dc.subject.keyword三維影像,花朵特徵,一級維管束,花冠輪廓,授粉綜合特徵,岩桐屬,zh_TW
dc.subject.keywordThree-dimensional image,Floral traits,First-order veins,Corolla contours,Pollination syndrome,Sinningia,en
dc.relation.page37
dc.identifier.doi10.6342/NTU201801470
dc.rights.note有償授權
dc.date.accepted2018-07-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved