請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69349完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳力騏(Richie L. C. Chen) | |
| dc.contributor.author | Chun-Yen Lee | en |
| dc.contributor.author | 李俊諺 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:13:30Z | - |
| dc.date.available | 2021-07-19 | |
| dc.date.copyright | 2018-07-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-12 | |
| dc.identifier.citation | 1. 陳秀玲。2005。人類肝細胞生長因子的工程改造及其活性分析。碩士論文。高雄:中山大學生物科學研究所。
2. Akinc A., M. Thomas, A. M. Klibanov, R. Langer. 2005. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. The Journal of Gene Medicine. 7: 657-663. 3. Aihua L., L. Yiming, H. Yu, S. Jingbo, W. Zhifen, Z. Xian, P. Qingeng. 2008. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. International Journal of Pharmaceutics. 359: 247-253. 4. Amirali P., L. Jian, Q. G. Lu, S. Z. Qiao. 2012. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry. 22: 11173-11178. 5. Andrew R., Foster, R. Philip, Beckett, D. William, Rees, F. Malcolm, Fuller. 1992. A sensitive isotopic assay for the measurement of lysine c-ketoglutarate reductase in cultured rat hepatocytes. The Journal of Nutritional Biochemistry. 3(10): 554-556. 6. Barbara S., A. Mark. 2014. Importance of endocytic pathways in liver function and disease. National Institutes of Health. 4(4): 1403-1417. 7. Berezhkovskiy L. M., S. Wong, J. S. Halladay. 2013. On the maintenance of hepatocyte intracellular pH 7.0 in the in-vitro metabolic stability assay. European Journal of Pharmaceutical Sciences. 40(6): 683-689. 8. Bolleyn J., V. Rogiers, T Vanhaecke. 2015. Functionality Testing of Primary Hepatocytes in Culture by Measuring Urea Synthesis. Methods in molecular biology. 1250: 317-321. 9. Bumgardner G. L., C.G. Orosz. 2000. Unusual patterns of Alloimmunity evoked by allogeneic liver parenchyma cells. Immunological Reviews. 174: 260-279. 10. Chen F, Y. Zhu. 2012. Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: Sensitive response to the narrow pH range. Microporous and Mesoporous Materials. 150: 83-89. 11. Chertok B., A. E. David, V. C. Yang. 2010. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intracarotid administration. Biomaterials. 31: 6317-6324. 12. Clark H. E., S. P. Yang, W. Walton, E. T. Mertz. 1960. Amino acid requirements of men and women. Relation of lysine requirement to sex, body size, basal caloric expenditure and creatinine excretion. The Journal of Nutrition. 71(3): 229-234. 13. Deepak K., D. Banerjee. 2017. Methods of albumin estimation in clinical biochemistry: Past, present, and future. Clinica Chimica Acta. 469: 150-160. 14. Dobson J. 2006. Magnetic nanoparticles for drug delivery. Drug Development Research. 67(1): 55-60. 15. Eugenio C., A. Domenico, Siena, S. Fusilli, M. R. Villani, G. Schiavone, M. Nardella, S. Balzano, F. Florio. 2000. Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma in Patients with Cirrhosis: Evaluation of Damage to Nontumorous Liver Tissue-Long-term Prospective Study. Vascular and Interventional Radiology. 215(1): 1578-1583. 16. Fiegel H. C., U. Kneser, D. Kluth, R. Metzger, H. Till, U. Rolle. 2009. Development of hepatic tissue engineering. Journal of Pediatric Surgery. 42(6): 667-673. 17. Flaten G. E., A.B. Dhanikul, K. Luthman, M. Brandl. 2006. Drug permeability across a phospholipid vesicle based barrier: A novel approach for studying passivediffusion. European Journal of Pharmaceutical Sciences. 27(1): 80-90. 18. Forbes S. J., P. N. Newsome. 2016. Liver regeneration-mechanisms and models to clinical application. Nature Reviews Gastroenterology & Hepatology. 13(8): 473-485. 19. Gainza G., S. Villullas, J. L. Pedraz, R. M. Hernandez, M. Igartua. 2015. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. European Journal of Pharmaceutical Sciences. 11(6): 1551-1573. 20. Geoffrey F., G. Charles, Moertel, L.Philip, F. Pretorius, P. Paul. 1978. Chemotherapy studies in primary liver cancer. A prospective randomized clinical trial. American cancer society. 42(5): 2149-2156. 21. Giang I., E. L. Boland, G. M. Poon. 2014. Prodrug applications for targeted cancer therapy. American Association of Pharmaceutical Scientists. 16(5): 899-913. 22. Gu Z., A. Biswas, M. Zhao, Y. Tang. 2011. Tailoring nanocarriers for intracellular protein delivery. European Journal of Pharmaceutical Sciences. 40(7): 3638-3655. 23. Harriet S. W., A. Samreen. 2017. Targeted therapies in cancer. Surgery. 36(3): 122-127. 24. Hirohito T., Y. Niitani, S. Hirono, H. Nakayama, E. Gonda, N. Arakaki, O. Sakiyama, K. Takahashi, M. Kimoto, S. Kawakami, Y. Daikuhara. 1991. Levels of the human hepatocyte growth factor in serum of patients with various liver diseases determined by an enzyme-linked immunosorbent assay. Hepatology. 13(1): 1-5. 25. Ishida S., Y. Sakiya, T. Ichikawa, Z. Taira. 1993. Uptake of glycyrrhizin by isolated rat hepatocytes. Biological and Pharmaceutical Bulletin. 16: 293–297. 26. Ishida S., Y. Sakiya, Z. Taira. 1994. Disposition of glycyrrhizin in the perfused liver of rats. Biological and Pharmaceutical Bulletin. 17: 960–969. 27. Ishii T., M. Sato, K. Sudo, M. Suzuki, H. Nakai, T. Hishida, T. Niwa, K. Umezu, S. Yuasa. 1995. Hepatocyte growth factor stimulates liver regeneration and elevates blood protein level in normal and partially hepatectomized rats. The Journal of Biochemistry. 117 (5): 1105-1112. 28. Ismair M., G. Stanca, C. Ha, H.R. Renner, E. L. Meier, P.J. Kullak-Ublick. 2003. Interactions of glycyrrhizin with organic anion transporting polypeptides of rat and human liver. Hepatol Research. 26(4): 343–347. 29. Kwangjae C., X. Wang, S. Nie, Z. G. Chen, D. M. Shin. 2008. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical Cancer Research. 14(5): 1310-1360. 30. Langer R. 1998. Drug delivery and targeting. Nature. 392: 5-10. 31. Lin A., Y. Liu, Y. Huang, J. Sun, Z. Wu, X. Zhang, Q. Ping. 2008. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. International Journal of Pharmaceutics. 359(1-2): 247-253. 32. Linda K. H., J. Wihelm, John T. F. 2005. Regulation of Hepatocyte Cell Cycle Progression and Differentiation by Type I Collagen Structure. Current Topics in Developmental Biology. 72: 205-236. 33. Liu Z., Y. Wang, J. Zhang. 2013. Pluronic P123-docetaxel conjugate micelles: synthesis, characterization, and antitumor activity. Biomed Nanotechnol. 9: 2007-2016. 34. Luc G., C. L. Lee, Y. Ken, I. Hatada, Y. Tanaka, H. Nakagama, T. Ochiya. 2018. Differentiation Therapy by Epigenetic Reconditioning Exerts Antitumor Effects on Liver Cancer Cells. Molecular Therapy. 26(7): 21-35. 35. Mark E. D., C. Zhuo, M. S. Dong. 2008. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery. 7: 771-782. 36. Mao S.J., S.X. Hou, L.K. Zhang, H. Jin, Y. Q. Bi, B. Jiang. 2003. Prepartion of bovine serum albumin nanoparicles surface-modified with glycyrrhizin. Acta Pharmaceutica Sinica. 38(10): 787–790. 37. Mao, S. J., S.X. Hou, R. He, L.K. Zhang, D. P. Wei, Y. Q. Bi, H. Jin. 2005. Uptake of albumin nanoparticle surface modified with glycyrrhizin by primary cultured rat hepatocytes.World Journal of Gastroenterology. 11(20): 3075–3079. 38. Mayor S., R. E. Pagano. 2007. Pathways of clathrin-independent endocytosis.Nature Reviews Molecular Cell Biology. 8(8): 603-612. 39. McConnell H. L., D. L. Schwartz, B. E. Richardson, R. L. Woltjer, L. L. Muldoon, E. A. Neuwelt. 2016. Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. Nanomedicine: Nanotechnology, Biology and Medicine. 12(6): 1535-1542. 40. Mishra N., N. P. Yadav, V. K. Rai, P. Sinha, K. S. Yadav, S. Jain, S. Arora. 2013. Efficient hepatic delivery of drugs: novel strategies and their significance. BioMed Research International. 382184. 41. Mooney D. J., S. Park, P. M. Kaufmann, K. Sano, K. J. McNamara, P. Vacanti, R. Langer. 1995. Biodegradable sponges for hepatocyte transplantation. Journal of Biomedical Materials Research. 29: 959-965. 42. Negishi M., A. Irie, N. Nagata, A. Ichikawa. 1991. Specific binding of glycyrrhetinic acid to the rat liver membrane.Biochimica et Biophysica Acta. 1166(1): 77–82. 43. Niemel E., D. Desai, Y. Nkizinkiko, J. E. Eriksson, J. M. Rosenholm. 2015. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. European Journal of Pharmaceutical Sciences. 96: 11-21. 44. Park J. K., D. H. Lee. 2005. Bioartificial liver systems: current status and future perspective. Journal of Bioscience and Bioengineering. 99: 311-319. 45. Paul H. 2001. Total Protein Quantification using OPA. BioTek. 20(1): 1-4. 46. Pauline R., H. Beloeil. 2018. Enhanced recpvery after hepatectomy: a systematic review. Anaesthesia Critical Care & Pain Medicine. 1: 1-2. 47. Pulavendran S., M. Rajam, C. Rose, A. B.Mandal. 2010. Hepatocyte growth factor incorporated chitosan nanoparticles differentiate murine bone marrow mesenchymal stem cell into hepatocytes in vitro. IET. Nanobiotechnol. 4 (3): 51-60. 48. Ratner B. D., A. S. Hoffman, F. J. Schoen, J. E. Lemons. 2013. Biomaterials Science: An introduction to materials in medicine 3rd edition . 1573. 49. Ringsdorf H. 1975. Structure and properties of pharmacologically active polymers. Journal of Polymer Science: Polymer Symposia banner. 51(1): 135-153. 50. Sakai-Kato K., N. Nishiyama, M. Kozaki. 2015. General considerations regarding the in vitro and in vivo properties of block copolymer micelle products and their evaluation. Control Release. 210: 76-83. 51. Schiller C. D., A. Kainz, K. Mynett, A. Gescher. 1992. Assessment of viability of hepatocytes in suspension using the MTT assay. Toxicology in Vitro. 6(6): 575-578. 52. Shan, J., K. R. Stevens, K. Trehan, G. H. Underhill, A. A. Chen, S. N. Bhatia. 2011. Hepatic tissue engineering. Molecular pathology of liver diseases. 9: 321-342. 53. Shaunagh M., D. A. Gervais. 2013. Radiofrequency Ablation of Liver Tumors. Seminars in Interventional Radiology. 30(1): 49-55. 54. Slowing I. I., J. L. Vivero, C. W. Wu, V. S. Lin. 2008. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. European Journal of Pharmaceutical Sciences. 60(11): 1278-1288. 55. Songmiao L., L. Liu, Q. Huang, K. L. Yam. 2009. Preparation of single or double-network chitosan/poly(vinyl alcohol) gel films through selectively cross-linking method. Carbojydrate Polymers. 77: 718-724. 56. Su Y., Y. Hu, Y. Du. 2015. Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharideg-stearic acid for cancer therapy. Molecular pharmaceutics. 12(4): 1193-1202. 57. Tadatsugu T., M. Hiroshi, F. Takashi, T. Chikako, K. Nobukazu, Y. Ryota, H. Junji. 1983. Structure and expression of a cloned cDNA for human interleukin-2. Nature. 302(24): 305-310. 58. Torchilin V. P. 2006. Multifunctional nanocarriers. Advanced Drug Delivery Reviews. 58(14): 1532-1555. 59. Toshikazu N., M. Shinya. 2010. The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine. National Institutes of health. 86(6): 588-610. 60. Turfus S., R. Delgoda, D. Picking, B. Gurley. 2017. Pharmacokinetics. Pharmacognosy. Fundamentals Applications and Strategies. 495-512. 61. Uhumwangho R. 2005. Current trends in the production and biomedical applications of liposomes: a review. Journal of Medicine and Biomedical Research. 4: 9-21. 62. Vasey P. A., S. B. Kaye, R. Morrison, C. Twelves, P. Wilson, R. Duncan, A. H. Thomson, Murray L. S., T. E. Hilditch, T. Murray, S. Burtles, D. Fraier, E. Frigerio, J. Cassidy. 1999. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropy I) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugateds. Cancer Research Campaign Phase I/II Committee. Clinical Cancer Research. 5(1): 83-94. 63. Wilczewska A., K. Niemirowicz, K. Markiewicz, H. Car. 2012. Nanoparticles as drug delivery systems. Medicine National Institutes of health. 64(5): 1020-1037. 64. Wu J., M. H. Nantz, M. A. Zern. 2002. Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Frontiers in Bioscience Journals. 7(2): 717-725. 65. Yamaoka M., K. Hirata, I. Ogata, T. Tomiya, S. Nagoshi, S. Mochida, K. Fujiwara. 1998. Enhancement of albumin production by hepatocyte growth factor in rat hepatocyte: distinction in mode of action from stimulation of DNA synthesis. Liver. 18: 52-59. 66. Yong T. L., R. Bohmer, G. K. Pande, S. E. Birks, D. C. Loh, P. M. Hewitt. 2010. Liver resection: a regional hospital experience. ANZ journal of surgery. 80(10): 710-713. 67. You H., P. Kinam. 2012. Targeted drug delivery to tumors: Myths, reality and possibility. Production Material Control. 153(3): 198-205. 68. Yu Q., Z. wei, J. Shi. Rodex-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharideg-stearic acid for cancer therapy. Molecular Pharmaceutics. 12(4): 1193-1202. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69349 | - |
| dc.description.abstract | 慢性肝炎及肝癌一直是國人十大死因之一,為了克服上述問題,肝臟的治療研究也普遍受到重視,對肝癌病患而言,目前常見的有肝切除手術、電燒、栓塞和標靶治療。肝細胞具備極強的再生能力,在接受物理刺激或化學刺激後,肝細胞會進行有絲分裂增生,然而目前治療肝臟碰到的主要問題為治療後肝機能低落造成肝臟復原率不佳。因此本研究首次嘗試將 Targeted drug delivery system (TDDS) 與肝組織再生的概念整合,以自製的標靶藥物載體來包埋能提升肝機能的小分子藥物來加速肝臟切除或電燒手術後的恢復速度,以期減少治療後肝細胞無法順利增生產生機能所導致的風險。
Mesoporous silica nanoparticles (MSNs) 是近年來研究上極為重視的奈米藥物載體,已被用於癌症的標靶治療,然而利用 TDDS 來標靶正常細胞,以其讓正常細胞能提升其自身機能的研究卻很少。本研究利用 MSNs 來包埋能促使細胞有絲分裂的 Lysine,再利用具有高生物相容性的 Chitosan 來修飾 MSNs-Lysine 的外表 (Chitosan-MSNs-Lysine; CS-ML),Chitosan 不但能使 MSNs-lysine 在透過胞吞作用進入細胞時不會破壞細胞膜,並且還具有 pH-control 功能。最後再利用能與肝細胞表面受器結合的 Glycyrrhizin (GL) 將其 conjugated 在 CS-ML 上 (Glycyrrhizin-Chitosan-MSNs-lysine; GL-CS-ML),預期這樣設計的標靶藥物載體 GL-CS-ML 能確實達到標靶肝細胞的功能。本研究結果證明:(1) 低濃度的 MSNs 對於肝細胞生長無毒害 (< 0.1mg/mL),(2) 濃度為 0.1ml/mL 的 Lysine 能提升 30% 的肝蛋白分泌量,並且具備跟 HGF 有相似的機能可刺激肝細胞由休止期重新回到細胞周期的效果,(3) CS-ML 和 GL-CS-ML 的 Lysine 包埋率最大可達 70%,(4) MSNs 表面電位和粒徑大小分別為 -31.8mV 和 148nm,而 CS-ML 的表面電位和粒徑大小則為 48.9mV 和 222nm,且經過 TEM 的觀察能證實 Chitosan 能成功修飾於 MSNs 上,(5) 由流式細胞儀檢測,肝細胞胞吞 GL-CS-ML 的量是胞吞 CS-ML 的 1.8 倍,並且肝細胞在與 NIH-3T3 共培養的情況下,肝細胞胞吞 GL-CS-ML 的比例較高,(6) GL-CS-ML 對肝蛋白和尿素分泌量分別提升約 40% 和 48%。本研究成功地將設計的標靶藥物載體 GL-CS-ML 用於肝細胞的體外培養,並進一步證實有促使肝細胞再生與增進肝機能的潛能,相信這樣的研究對未來奈米材料應用於肝細胞培養的相關議題上具有很大的發展空間。 | zh_TW |
| dc.description.abstract | Mesoporous silica nanoparticles (MSNs) are solid materials possessing a honeycomb-like porous structure and hundreds of empty channels, it has been developed recently and regarded as an efficient drug carrier in the targeted drug delivery system (TDDS). However, most of the TDDS are designed to kill the tumor cells, and there are fewer related-reports about the cell-targeted strategy for enhancing the functionality of targeted cells. In this study, we applied MSNs to carry lysine for hepatocyte culture since lysine has been proved to enhance the mitosis of cell. Moreover, MSNs were encapsulated with chitosan to enhance the biocompatibility (Chitosan-MSNs-Lysine; CS-ML), and glycyrrhizin (GL) were conjugated to CS-ML for hepatocyte targeting (Glycyrrhizin-Chitosan-MSNs-Lysine; GL-CS-ML). Results have shown that: (1) MSNs showed no cytotoxicity to the hepatocytes in low concentration (<0.1mg/mL). (2) The albumin concentration in hepatocyte cultures with 0.1 mg/mL of lysine was increased 30% higher (this results are consistent with HGF) than that in control condition. (3) The maximum loading capacity of lysine on CS-ML and GL-CS-ML are both 70%. (4) MSNs particles showed a negative zeta potential of -31.8mV compared to the CS-ML, which showed highly positive zeta potentials of 48.9mV. The average particle size of CS-ML (222nm) was found to be relatively larger than MSNs (148nm). (5) The cell uptake amount of GL-CS-ML is 1.8 times higher than that in CS-ML in hepatocyte cultures. (6) The albumin and urea concentration in hepatocyte cultures with GL-CS-ML was separately increased 40% and 48% higher than that in control condition. In conclusion, GL-CS-ML has a high potential in hepatocyte-target study. Its significant impacts are far-reaching at scientific and industrial aspects and will reinforce our existing research strengths in liver tissue engineering. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:13:30Z (GMT). No. of bitstreams: 1 ntu-107-R05631010-1.pdf: 3549249 bytes, checksum: 5746116048d15aedca6faf4a93132782 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 i
英文摘要 iii 目錄 iv 圖目錄 v 表目錄 vi 第一章 緒論 1 1.1 前言 1 第二章 文獻探討 3 2.1 肝臟的治療方式 3 2.1.1 肝組織再生 3 2.1.2 肝臟移植 4 2.1.3 肝臟切除手術 4 2.1.4 電燒療法 4 2.1.5 栓塞治療 5 2.1.6 肝臟標靶藥物治療 5 2.2 藥物動力學 (Pharmacokinetics) 6 2.3 標靶治療 (Target therapy) 7 2.3.1 被動式標靶 7 2.3.2 主動式標靶 8 2.4 藥物載體 (Drug carriers) 8 2.4.1 藥物載體的需求 8 2.4.2 奈米藥物載體 9 2.5 提升肝細胞機能的 Molecules 12 2.6 胞吞作用 (Endocytosis) 14 2.7 胞內體逃脫 (Endosome escape) 15 2.8 奈米藥物載體的修飾 16 第三章 研究動機與目的 18 第四章 研究方法 20 4.1 實驗儀器與設備 20 4.2 實驗藥品 20 4.3 實驗耗材 21 4.4 實驗動物及細胞 21 4.5 肝細胞培養 22 4.6 肝細胞活性檢測 MTT assay 22 4.7 肝細胞激能檢測 Albumin ELISA 23 4.8 MSNs 對肝細胞培養的毒性測試 24 4.9 Lysine 對肝機能的增益之最佳化濃度探討 24 4.10 Lysine 與 HGF 對肝機能的影響之比較 24 4.11 透過 Flow cytometry 來檢測 Lysine 與 HGF 對肝細胞的分裂影響之比較 25 4.12 Chitosan-coated, Lysine-embedded MSNs 的藥物載體製備 26 4.13 Glycyrrhizin conjugated, Chitosan-coated, Lysine-embedded MSNs 的藥物載體製備 27 4.14 檢測各種藥物載體所包埋的 Lysine 量 28 4.15 測量各種藥物載體之表面電位與粒徑大小 30 4.16 利用 TEM 觀察 MSNs 和 CS-ML 的表面差異性 30 4.17 ML 與 CS-ML 在不同 pH 值下的 Lysine 釋放率 30 4.18 包埋不同 Lysine 濃度的 CS-ML 用於肝細胞的培養 31 4.19 Chitosan-coated 的有無在 ML 上對肝細胞的活性影響 31 4.20 FITC-GL-CS-ML 和 FITC-CS-ML containing medium 的製備 31 4.21 利用螢光顯微鏡及 Flow cytometry 觀察肝細胞與 NIH-3T3 分別加入 GL-CS-ML 與 CS-ML 後的細胞包吞情況 32 4.22 標靶藥物載體 GL-CS-ML 在肝細胞與 NIH-3T3 共培養情況下的標靶效果測試 33 4.23 標靶藥物載體 GL-CS-ML 對肝機能的 Albumin 分泌量之比較 33 4.24 標靶藥物載體 GL-CS-ML 對肝細胞的 Urea 分泌量檢測之比較 34 第五章 實驗結果與討論 35 5.1 MSNs 對肝細胞的毒性測試 35 5.1.1 MTT 檢測 35 5.1.2 Albumin ELISA 36 5.1.3 再現性實驗 37 5.2 Lysine 對肝細胞增益效果之最佳化濃度探討 38 5.2.1 MTT 檢測 38 5.2.2 Lysine 對肝細胞培養之最佳化濃度探討 39 5.2.3 Albumin ELISA 檢測 40 5.3 Lysine 和 Hepatocyte growth factor (HGF)對肝機能提升之比較 41 5.3.1 MTT 檢測 41 5.3.2 Albumin ELISA 檢測 42 5.4 透過流式細胞儀來檢測 Lysine 和 HGF 對肝細胞分裂的影響 43 5.5 各種藥物載體所包埋的 Lysine 量 45 5.6 各種藥物載體的表面電位與粒徑大小分析 47 5.7 透過 TEM 觀察 Chitosan 有無確實包覆在 MSNs-Lysine 表面 48 5.8 ML 和 CS-ML 在不同 pH 值下的 Lysine 釋放率 49 5.9 不同 Lysine 濃度的藥物載體 CS-ML 用於肝細胞的培養 51 5.10 Chitosan-coated 在 MSNs-Lysine 上對肝細胞的活性影響 52 5.11 肝細胞對 CS-ML 和 GL-CS-ML 的胞吞量比較 55 5.12 NIH-3T3 對 CS-ML 和 GL-CS-ML 的胞吞量比較 58 5.13 肝細胞與 NIH-3T3 共培養來測定 GL-CS-ML 的標靶能力 61 5.14 標靶藥物載體 GL-CS-ML 對肝細胞的增益效果 62 5.15 標靶藥物載體 GL-CS-ML 對肝細胞的尿素分泌量之比較 64 第六章 結論與未來展望 65 6.1 結論 65 6.2 未來展望 68 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | Lysine | zh_TW |
| dc.subject | Chitosan | zh_TW |
| dc.subject | MSNs | zh_TW |
| dc.subject | 標靶藥物載體 | zh_TW |
| dc.subject | 肝組織再生 | zh_TW |
| dc.subject | Glycyrrhizin | zh_TW |
| dc.subject | Glycyrrhizin | en |
| dc.subject | Liver regenearion | en |
| dc.subject | Targeted drug delivery system (TDDS) | en |
| dc.subject | Mesoporous silica nanoparticles (MSNs) | en |
| dc.subject | Lysine | en |
| dc.subject | Chitosan | en |
| dc.title | 標靶藥物載體之劑型開發用於肝組織再生之研究 | zh_TW |
| dc.title | Development of a novel targeted drug delivery system for liver tissue regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳林祈(Lin-Chi Chen),侯詠德(Yung-te Hou),吳嘉文(Chia-Wen (Kevin),陳彥榮(Ed-Chern Chen) | |
| dc.subject.keyword | 肝組織再生,標靶藥物載體,MSNs,Lysine,Chitosan,Glycyrrhizin, | zh_TW |
| dc.subject.keyword | Liver regenearion,Targeted drug delivery system (TDDS),Mesoporous silica nanoparticles (MSNs),Lysine,Chitosan,Glycyrrhizin, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201801473 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
