請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69346完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Chantal Hoi Yin Cheung | en |
| dc.contributor.author | 張海姸 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:13:26Z | - |
| dc.date.available | 2023-07-19 | |
| dc.date.copyright | 2018-07-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-12 | |
| dc.identifier.citation | 1. Hood, L., and Rowen, L. (2013) The Human Genome Project: big science transforms biology and medicine. Genome Med 5, 79.
2. Consortium, E. P. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74. 3. Kar, G., Gursoy, A., and Keskin, O. (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5, e1000601. 4. DeBerardinis, R. J., and Chandel, N. S. (2016) Fundamentals of cancer metabolism. Sci Adv 2, e1600200. 5. Metzker, M. L. (2010) Sequencing technologies - the next generation. Nat Rev Genet 11, 31-46. 6. Pareek, C. S., Smoczynski, R., and Tretyn, A. (2011) Sequencing technologies and genome sequencing. J Appl Genet 52, 413-435. 7. Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., Sunpaweravong, P., Han, B., Margono, B., Ichinose, Y., Nishiwaki, Y., Ohe, Y., Yang, J. J., Chewaskulyong, B., Jiang, H., Duffield, E. L., Watkins, C. L., Armour, A. A., and Fukuoka, M. (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361, 947-957. 8. Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nature reviews. Genetics 10, 669-680. 9. Aparicio, O., Geisberg, J. V., and Struhl, K. (2004) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.], p. Unit 17 17 10. Hsu, C. L., Chang, H. Y., Chang, J. Y., Hsu, W. M., Huang, H. C., and Juan, H. F. (2016) Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 7, 36293-36310. 11. Butte, A. (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1, 951-960. 12. Pandey, A., and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837-846. 13. Cifani, P., and Kentsis, A. (2017) Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics 17 14. Neverova, I., and Van Eyk, J. E. (2005) Role of chromatographic techniques in proteomic analysis. J Chromatogr B Analyt Technol Biomed Life Sci 815, 51-63. 15. Abdallah, C., Dumas-Gaudot, E., Renaut, J., and Sergeant, K. (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics 2012, 494572. 16. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994-999. 17. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154-1169. 18. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A. K., and Hamon, C. (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75, 1895-1904. 19. Xiang, F., Ye, H., Chen, R., Fu, Q., and Li, L. (2010) N,N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal Chem 82, 2817-2825. 20. Zhang, J., Wang, Y., and Li, S. (2010) Deuterium isobaric amine-reactive tags for quantitative proteomics. Anal Chem 82, 7588-7595. 21. Birse, C. E., Lagier, R. J., FitzHugh, W., Pass, H. I., Rom, W. N., Edell, E. S., Bungum, A. O., Maldonado, F., Jett, J. R., Mesri, M., Sult, E., Joseloff, E., Li, A., Heidbrink, J., Dhariwal, G., Danis, C., Tomic, J. L., Bruce, R. J., Moore, P. A., He, T., Lewis, M. E., and Ruben, S. M. (2015) Blood-based lung cancer biomarkers identified through proteomic discovery in cancer tissues, cell lines and conditioned medium. Clin Proteomics 12, 18. 22. Fujii, K., Nakamura, H., and Nishimura, T. (2017) Recent mass spectrometry-based proteomics for biomarker discovery in lung cancer, COPD, and asthma. Expert Rev Proteomics 14, 373-386. 23. Humphrey, S. J., James, D. E., and Mann, M. (2015) Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol Metab 26, 676-687. 24. Fila, J., and Honys, D. (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43, 1025-1047. 25. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4, 873-886. 26. Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M., and Ishihama, Y. (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6, 1103-1109. 27. Samuelsson, L. M., and Larsson, D. G. (2008) Contributions from metabolomics to fish research. Mol Biosyst 4, 974-979. 28. Armitage, E. G., and Barbas, C. (2014) Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 87, 1-11. 29. Clish, C. B. (2015) Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud 1, a000588. 30. Wishart, D. S. (2007) Proteomics and the human metabolome project. Expert Rev Proteomics 4, 333-335. 31. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., Hau, D. D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J. A., Lim, E., Sobsey, C. A., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A., De Souza, A., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova, A., Shaykhutdinov, R., Li, L., Vogel, H. J., and Forsythe, I. (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37, D603-610. 32. Luscombe, N. M., Greenbaum, D., and Gerstein, M. (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40, 346-358. 33. Siegel, R. L., Miller, K. D., and Jemal, A. (2016) Cancer statistics, 2016. CA Cancer J Clin 66, 7-30. 34. Crino, L., Weder, W., van Meerbeeck, J., Felip, E., and Group, E. G. W. (2010) Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21 Suppl 5, v103-115. 35. Cheung, C. H. Y., and Juan, H. F. (2017) Quantitative proteomics in lung cancer. J Biomed Sci 24, 37. 36. Croce, C. M. (2008) Oncogenes and cancer. N Engl J Med 358, 502-511. 37. Collins, K., Jacks, T., and Pavletich, N. P. (1997) The cell cycle and cancer. Proc Natl Acad Sci U S A 94, 2776-2778. 38. Macheret, M., and Halazonetis, T. D. (2015) DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10, 425-448. 39. Pogorelcnik, B., Perdih, A., and Solmajer, T. (2013) Recent developments of DNA poisons--human DNA topoisomerase IIalpha inhibitors--as anticancer agents. Curr Pharm Des 19, 2474-2488. 40. Singh, D. K., Krishna, S., Chandra, S., Shameem, M., Deshmukh, A. L., and Banerjee, D. (2014) Human DNA ligases: a comprehensive new look for cancer therapy. Med Res Rev 34, 567-595. 41. Aye, Y., Li, M., Long, M. J., and Weiss, R. S. (2015) Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34, 2011-2021. 42. Simon, N. E., and Schwacha, A. (2014) The Mcm2-7 replicative helicase: a promising chemotherapeutic target. Biomed Res Int 2014, 549719. 43. Blow, J. J., and Gillespie, P. J. (2008) Replication licensing and cancer--a fatal entanglement? Nat Rev Cancer 8, 799-806. 44. Diffley, J. F. (2004) Regulation of early events in chromosome replication. Curr Biol 14, R778-786. 45. Bell, S. P., and Dutta, A. (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333-374. 46. Evrin, C., Clarke, P., Zech, J., Lurz, R., Sun, J., Uhle, S., Li, H., Stillman, B., and Speck, C. (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106, 20240-20245. 47. Lei, M., and Tye, B. K. (2001) Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci 114, 1447-1454. 48. Remus, D., Beuron, F., Tolun, G., Griffith, J. D., Morris, E. P., and Diffley, J. F. (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719-730. 49. Hubbard, M. J., and Cohen, P. (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18, 172-177. 50. Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., and Skrzypek, E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43, D512-520. 51. Hu, C. W., Hsu, C. L., Wang, Y. C., Ishihama, Y., Ku, W. C., Huang, H. C., and Juan, H. F. (2015) Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin. Mol Cell Proteomics 14, 3284-3298. 52. Lundby, A., Secher, A., Lage, K., Nordsborg, N. B., Dmytriyev, A., Lundby, C., and Olsen, J. V. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876. 53. Wolschin, F., Wienkoop, S., and Weckwerth, W. (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5, 4389-4397. 54. Maine, G. T., Sinha, P., and Tye, B. K. (1984) Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106, 365-385. 55. Bochman, M. L., and Schwacha, A. (2007) Differences in the single-stranded DNA binding activities of MCM2-7 and MCM467: MCM2 and MCM5 define a slow ATP-dependent step. J Biol Chem 282, 33795-33804. 56. Yang, J., Ramnath, N., Moysich, K. B., Asch, H. L., Swede, H., Alrawi, S. J., Huberman, J., Geradts, J., Brooks, J. S., and Tan, D. (2006) Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC Cancer 6, 203. 57. Ha, S. A., Shin, S. M., Namkoong, H., Lee, H., Cho, G. W., Hur, S. Y., Kim, T. E., and Kim, J. W. (2004) Cancer-associated expression of minichromosome maintenance 3 gene in several human cancers and its involvement in tumorigenesis. Clin Cancer Res 10, 8386-8395. 58. Kikuchi, J., Kinoshita, I., Shimizu, Y., Kikuchi, E., Takeda, K., Aburatani, H., Oizumi, S., Konishi, J., Kaga, K., Matsuno, Y., Birrer, M. J., Nishimura, M., and Dosaka-Akita, H. (2011) Minichromosome maintenance (MCM) protein 4 as a marker for proliferation and its clinical and clinicopathological significance in non-small cell lung cancer. Lung Cancer 72, 229-237. 59. Fujioka, S., Shomori, K., Nishihara, K., Yamaga, K., Nosaka, K., Araki, K., Haruki, T., Taniguchi, Y., Nakamura, H., and Ito, H. (2009) Expression of minichromosome maintenance 7 (MCM7) in small lung adenocarcinomas (pT1): Prognostic implication. Lung Cancer 65, 223-229. 60. Vigouroux, C., Casse, J. M., Battaglia-Hsu, S. F., Brochin, L., Luc, A., Paris, C., Lacomme, S., Gueant, J. L., Vignaud, J. M., and Gauchotte, G. (2015) Methyl(R217)HuR and MCM6 are inversely correlated and are prognostic markers in non small cell lung carcinoma. Lung Cancer 89, 189-196. 61. Wu, X., Ruan, L., Yang, Y., and Mei, Q. (2016) Identification of crucial regulatory relationships between long non-coding RNAs and protein-coding genes in lung squamous cell carcinoma. Mol Cell Probes 30, 146-152. 62. Pape, T., Meka, H., Chen, S., Vicentini, G., van Heel, M., and Onesti, S. (2003) Hexameric ring structure of the full-length archaeal MCM protein complex. EMBO Rep 4, 1079-1083. 63. Samel, S. A., Fernandez-Cid, A., Sun, J., Riera, A., Tognetti, S., Herrera, M. C., Li, H., and Speck, C. (2014) A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 28, 1653-1666. 64. Bochman, M. L., and Schwacha, A. (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31, 287-293. 65. Feng, J., Liang, J., Li, J., Li, Y., Liang, H., Zhao, X., McNutt, M. A., and Yin, Y. (2015) PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress. Cell Rep 13, 1295-1303. 66. Montagnoli, A., Valsasina, B., Brotherton, D., Troiani, S., Rainoldi, S., Tenca, P., Molinari, A., and Santocanale, C. (2006) Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem 281, 10281-10290. 67. Liu, M., Li, J. S., Tian, D. P., Huang, B., Rosqvist, S., and Su, M. (2013) MCM2 expression levels predict diagnosis and prognosis in gastric cardiac cancer. Histol Histopathol 28, 481-492. 68. Meng, M. V., Grossfeld, G. D., Williams, G. H., Dilworth, S., Stoeber, K., Mulley, T. W., Weinberg, V., Carroll, P. R., and Tlsty, T. D. (2001) Minichromosome maintenance protein 2 expression in prostate: characterization and association with outcome after therapy for cancer. Clin Cancer Res 7, 2712-2718. 69. Ramnath, N., Hernandez, F. J., Tan, D. F., Huberman, J. A., Natarajan, N., Beck, A. F., Hyland, A., Todorov, I. T., Brooks, J. S., and Bepler, G. (2001) MCM2 is an independent predictor of survival in patients with non-small-cell lung cancer. J Clin Oncol 19, 4259-4266. 70. Cheung, C. H. Y., Hsu, C. L., Chen, K. P., Chong, S. T., Wu, C. H., Huang, H. C., and Juan, H. F. (2017) MCM2-regulated functional networks in lung cancer by multi-dimensional proteomic approach. Sci Rep 7, 13302. 71. Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2, 1896-1906. 72. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A. J. (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4, 484-494. 73. Kyono, Y., Sugiyama, N., Imami, K., Tomita, M., and Ishihama, Y. (2008) Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res 7, 4585-4593. 74. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-1372. 75. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10, 1794-1805. 76. Wu, Y. H., Hu, C. W., Chien, C. W., Chen, Y. J., Huang, H. C., and Juan, H. F. (2013) Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin. PLoS One 8, e70642. 77. Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach, I., Fobo, G., Frishman, G., Montrone, C., and Mewes, H. W. (2010) CORUM: the comprehensive resource of mammalian protein complexes--2009. Nucleic Acids Res 38, D497-501. 78. Merico, D., Isserlin, R., Stueker, O., Emili, A., and Bader, G. D. (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5, e13984. 79. Morris, J. H., Kuchinsky, A., Ferrin, T. E., and Pico, A. R. (2014) enhancedGraphics: a Cytoscape app for enhanced node graphics. F1000Res 3, 147. 80. Cooper, T. A., Wan, L., and Dreyfuss, G. (2009) RNA and disease. Cell 136, 777-793. 81. Sveen, A., Kilpinen, S., Ruusulehto, A., Lothe, R. A., and Skotheim, R. I. (2016) Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 35, 2413-2427. 82. Venables, J. P., Klinck, R., Koh, C., Gervais-Bird, J., Bramard, A., Inkel, L., Durand, M., Couture, S., Froehlich, U., Lapointe, E., Lucier, J. F., Thibault, P., Rancourt, C., Tremblay, K., Prinos, P., Chabot, B., and Elela, S. A. (2009) Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 16, 670-676. 83. Ghigna, C., Valacca, C., and Biamonti, G. (2008) Alternative splicing and tumor progression. Curr Genomics 9, 556-570. 84. Bertoli, C., Skotheim, J. M., and de Bruin, R. A. (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14, 518-528. 85. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., and von Mering, C. (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43, D447-452. 86. Thomae, A. W., Pich, D., Brocher, J., Spindler, M. P., Berens, C., Hock, R., Hammerschmidt, W., and Schepers, A. (2008) Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins. Proceedings of the National Academy of Sciences of the United States of America 105, 1692-1697. 87. Norseen, J., Thomae, A., Sridharan, V., Aiyar, A., Schepers, A., and Lieberman, P. M. (2008) RNA-dependent recruitment of the origin recognition complex. The EMBO journal 27, 3024-3035. 88. Thomae, A. W., Baltin, J., Pich, D., Deutsch, M. J., Ravasz, M., Zeller, K., Gossen, M., Hammerschmidt, W., and Schepers, A. (2011) Different roles of the human Orc6 protein in the replication initiation process. Cell Mol Life Sci 68, 3741-3756. 89. Wang, D. Z., Ray, P., and Boothby, M. (1995) Interleukin 4-inducible phosphorylation of HMG-I(Y) is inhibited by rapamycin. J Biol Chem 270, 22924-22932. 90. Sgarra, R., Rustighi, A., Tessari, M. A., Di Bernardo, J., Altamura, S., Fusco, A., Manfioletti, G., and Giancotti, V. (2004) Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer. FEBS Lett 574, 1-8. 91. Zou, Y., and Wang, Y. (2005) Tandem mass spectrometry for the examination of the posttranslational modifications of high-mobility group A1 proteins: symmetric and asymmetric dimethylation of Arg25 in HMGA1a protein. Biochemistry 44, 6293-6301. 92. Zhang, Q., and Wang, Y. (2008) High mobility group proteins and their post-translational modifications. Biochim Biophys Acta 1784, 1159-1166. 93. Liu, Y., He, G., Wang, Y., Guan, X., Pang, X., and Zhang, B. (2013) MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol Lett 221, 23-30. 94. Zhang, X., Teng, Y., Yang, F., Wang, M., Hong, X., Ye, L. G., Gao, Y. N., and Chen, G. Y. (2015) MCM2 is a therapeutic target of lovastatin in human non-small cell lung carcinomas. Oncol Rep 33, 2599-2605. 95. Harsha, H. C., and Pandey, A. (2010) Phosphoproteomics in cancer. Molecular oncology 4, 482-495. 96. Brognard, J., and Hunter, T. (2011) Protein kinase signaling networks in cancer. Curr Opin Genet Dev 21, 4-11. 97. Vijayraghavan, S., and Schwacha, A. (2012) The eukaryotic Mcm2-7 replicative helicase. Subcell Biochem 62, 113-134. 98. Dang, H. Q., and Li, Z. (2011) The Cdc45.Mcm2-7.GINS protein complex in trypanosomes regulates DNA replication and interacts with two Orc1-like proteins in the origin recognition complex. J Biol Chem 286, 32424-32435. 99. Stoeber, K., Tlsty, T. D., Happerfield, L., Thomas, G. A., Romanov, S., Bobrow, L., Williams, E. D., and Williams, G. H. (2001) DNA replication licensing and human cell proliferation. J Cell Sci 114, 2027-2041. 100. Catez, F., and Hock, R. (2010) Binding and interplay of HMG proteins on chromatin: lessons from live cell imaging. Biochim Biophys Acta 1799, 15-27. 101. Zhang, Z. H., Li, J. J., Wang, Q. J., Zhao, W. Q., Hong, J., Lou, S. J., and Xu, X. H. (2015) WNK1 is involved in Nogo66 inhibition of OPC differentiation. Mol Cell Neurosci 65, 135-142. 102. Edberg, D. D., Bruce, J. E., Siems, W. F., and Reeves, R. (2004) In vivo posttranslational modifications of the high mobility group A1a proteins in breast cancer cells of differing metastatic potential. Biochemistry 43, 11500-11515. 103. Maris, J. M., Hogarty, M. D., Bagatell, R., and Cohn, S. L. (2007) Neuroblastoma. Lancet 369, 2106-2120. 104. Olsen, R. R., Otero, J. H., Garcia-Lopez, J., Wallace, K., Finkelstein, D., Rehg, J. E., Yin, Z., Wang, Y. D., and Freeman, K. W. (2017) MYCN induces neuroblastoma in primary neural crest cells. Oncogene 36, 5075-5082. 105. Huang, M., and Weiss, W. A. (2013) Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 3, a014415. 106. Cohn, S. L., Pearson, A. D., London, W. B., Monclair, T., Ambros, P. F., Brodeur, G. M., Faldum, A., Hero, B., Iehara, T., Machin, D., Mosseri, V., Simon, T., Garaventa, A., Castel, V., Matthay, K. K., and Force, I. T. (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27, 289-297. 107. Seeger, R. C., Brodeur, G. M., Sather, H., Dalton, A., Siegel, S. E., Wong, K. Y., and Hammond, D. (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313, 1111-1116. 108. Bown, N., Cotterill, S., Lastowska, M., O'Neill, S., Pearson, A. D., Plantaz, D., Meddeb, M., Danglot, G., Brinkschmidt, C., Christiansen, H., Laureys, G., Speleman, F., Nicholson, J., Bernheim, A., Betts, D. R., Vandesompele, J., and Van Roy, N. (1999) Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340, 1954-1961. 109. Attiyeh, E. F., London, W. B., Mosse, Y. P., Wang, Q., Winter, C., Khazi, D., McGrady, P. W., Seeger, R. C., Look, A. T., Shimada, H., Brodeur, G. M., Cohn, S. L., Matthay, K. K., Maris, J. M., and Children's Oncology, G. (2005) Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 353, 2243-2253. 110. Depuydt, P., Boeva, V., Hocking, T. D., Cannoodt, R., Ambros, I. M., Ambros, P. F., Asgharzadeh, S., Attiyeh, E. F., Combaret, V., Defferrari, R., Fischer, M., Hero, B., Hogarty, M. D., Irwin, M. S., Koster, J., Kreissman, S., Ladenstein, R., Lapouble, E., Laureys, G., London, W. B., Mazzocco, K., Nakagawara, A., Noguera, R., Ohira, M., Park, J. R., Potschger, U., Theissen, J., Tonini, G. P., Valteau-Couanet, D., Varesio, L., Versteeg, R., Speleman, F., Maris, J. M., Schleiermacher, G., and De Preter, K. (2018) Genomic Amplifications and Distal 6q Loss: Novel Markers for Poor Survival in High-risk Neuroblastoma Patients. J Natl Cancer Inst 111. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., and Bishop, J. M. (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121-1124. 112. Mathsyaraja, H., and Eisenman, R. N. (2016) Parsing Myc Paralogs in Oncogenesis. Cancer Cell 29, 1-2. 113. Ruiz-Perez, M. V., Henley, A. B., and Arsenian-Henriksson, M. (2017) The MYCN Protein in Health and Disease. Genes (Basel) 8 114. Irwin, M. S., and Park, J. R. (2015) Neuroblastoma: paradigm for precision medicine. Pediatr Clin North Am 62, 225-256. 115. Cairns, R. A., Harris, I. S., and Mak, T. W. (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85-95. 116. Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. 117. Liu, M., Xia, Y., Ding, J., Ye, B., Zhao, E., Choi, J. H., Alptekin, A., Yan, C., Dong, Z., Huang, S., Yang, L., Cui, H., Zha, Y., and Ding, H. F. (2016) Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells. Cell Rep 17, 609-623. 118. Carter, D. R., Sutton, S. K., Pajic, M., Murray, J., Sekyere, E. O., Fletcher, J., Beckers, A., De Preter, K., Speleman, F., George, R. E., Haber, M., Norris, M. D., Cheung, B. B., and Marshall, G. M. (2016) Glutathione biosynthesis is upregulated at the initiation of MYCN-driven neuroblastoma tumorigenesis. Mol Oncol 10, 866-878. 119. Zirath, H., Frenzel, A., Oliynyk, G., Segerstrom, L., Westermark, U. K., Larsson, K., Munksgaard Persson, M., Hultenby, K., Lehtio, J., Einvik, C., Pahlman, S., Kogner, P., Jakobsson, P. J., and Henriksson, M. A. (2013) MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci U S A 110, 10258-10263. 120. Altman, B. J., Hsieh, A. L., Sengupta, A., Krishnanaiah, S. Y., Stine, Z. E., Walton, Z. E., Gouw, A. M., Venkataraman, A., Li, B., Goraksha-Hicks, P., Diskin, S. J., Bellovin, D. I., Simon, M. C., Rathmell, J. C., Lazar, M. A., Maris, J. M., Felsher, D. W., Hogenesch, J. B., Weljie, A. M., and Dang, C. V. (2015) MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metab 22, 1009-1019. 121. Pedley, A. M., and Benkovic, S. J. (2017) A New View into the Regulation of Purine Metabolism: The Purinosome. Trends Biochem Sci 42, 141-154. 122. An, S., Kumar, R., Sheets, E. D., and Benkovic, S. J. (2008) Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103-106. 123. Zhao, H., French, J. B., Fang, Y., and Benkovic, S. J. (2013) The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem Commun (Camb) 49, 4444-4452. 124. French, J. B., Jones, S. A., Deng, H., Pedley, A. M., Kim, D., Chan, C. Y., Hu, H., Pugh, R. J., Zhao, H., Zhang, Y., Huang, T. J., Fang, Y., Zhuang, X., and Benkovic, S. J. (2016) Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733-737. 125. Nilsson, R., Jain, M., Madhusudhan, N., Sheppard, N. G., Strittmatter, L., Kampf, C., Huang, J., Asplund, A., and Mootha, V. K. (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5, 3128. 126. Locasale, J. W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13, 572-583. 127. Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287. 128. Bi, H., Krausz, K. W., Manna, S. K., Li, F., Johnson, C. H., and Gonzalez, F. J. (2013) Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem 405, 5279-5289. 129. Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., Gould, J., Davis, J. F., Tubelli, A. A., Asiedu, J. K., Lahr, D. L., Hirschman, J. E., Liu, Z., Donahue, M., Julian, B., Khan, M., Wadden, D., Smith, I. C., Lam, D., Liberzon, A., Toder, C., Bagul, M., Orzechowski, M., Enache, O. M., Piccioni, F., Johnson, S. A., Lyons, N. J., Berger, A. H., Shamji, A. F., Brooks, A. N., Vrcic, A., Flynn, C., Rosains, J., Takeda, D. Y., Hu, R., Davison, D., Lamb, J., Ardlie, K., Hogstrom, L., Greenside, P., Gray, N. S., Clemons, P. A., Silver, S., Wu, X., Zhao, W. N., Read-Button, W., Wu, X., Haggarty, S. J., Ronco, L. V., Boehm, J. S., Schreiber, S. L., Doench, J. G., Bittker, J. A., Root, D. E., Wong, B., and Golub, T. R. (2017) A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 171, 1437-1452 e1417. 130. Chou, T. C. (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70, 440-446. 131. Selmi, A., de Saint-Jean, M., Jallas, A. C., Garin, E., Hogarty, M. D., Benard, J., Puisieux, A., Marabelle, A., and Valsesia-Wittmann, S. (2015) TWIST1 is a direct transcriptional target of MYCN and MYC in neuroblastoma. Cancer Lett 357, 412-418. 132. Zhao, X., D, D. A., Lim, W. K., Brahmachary, M., Carro, M. S., Ludwig, T., Cardo, C. C., Guillemot, F., Aldape, K., Califano, A., Iavarone, A., and Lasorella, A. (2009) The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev Cell 17, 210-221. 133. Defferrari, R., Tonini, G. P., Conte, M., Papio, F., Sementa, A. R., Valent, A., Schena, F., Perri, P., and Mazzocco, K. (2007) Concomitant DDX1 and MYCN gain in neuroblastoma. Cancer Lett 256, 56-63. 134. Tong, X., Zhao, F., and Thompson, C. B. (2009) The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 19, 32-37. 135. Stover, P. J. (2009) One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr 139, 2402-2405. 136. Ducker, G. S., Chen, L., Morscher, R. J., Ghergurovich, J. M., Esposito, M., Teng, X., Kang, Y., and Rabinowitz, J. D. (2016) Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. Cell Metab 23, 1140-1153. 137. Schramm, G., Wiesberg, S., Diessl, N., Kranz, A. L., Sagulenko, V., Oswald, M., Reinelt, G., Westermann, F., Eils, R., and Konig, R. (2010) PathWave: discovering patterns of differentially regulated enzymes in metabolic pathways. Bioinformatics 26, 1225-1231. 138. Morrish, F., Neretti, N., Sedivy, J. M., and Hockenbery, D. M. (2008) The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle 7, 1054-1066. 139. Liotta, L. A., and Kohn, E. C. (2001) The microenvironment of the tumour-host interface. Nature 411, 375-379. 140. Voit, E. O., Qi, Z., and Miller, G. W. (2008) Steps of modeling complex biological systems. Pharmacopsychiatry 41 Suppl 1, S78-84. 141. Fischer, H. P. (2008) Mathematical modeling of complex biological systems: from parts lists to understanding systems behavior. Alcohol Res Health 31, 49-59. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69346 | - |
| dc.description.abstract | 多體學方法啟動了癌症研究的時代,加強了我們對生物系統複雜的相互作用之理解,並試圖揭示其潛在的分子機制,與辨認治療標的。我們利用整合磷酸化蛋白質體和蛋白質體進行了多維蛋白質體學方法,進而去揭露肺癌的功能網絡。MCM2是DNA複製起點的許可因子,並能幫助DNA解旋。 然而,肺癌細胞中透過蛋白質磷酸化的MCM2生物網絡仍然未開拓。藉由蛋白質體學技術,我們辨認到了753個磷酸化蛋白上的2361個磷酸化位點,和4672個蛋白,並發現MCM2的失調與肺癌細胞增生、細胞週期和遷移息息相關。 此外,我們發現HMGA1S99磷酸化在MCM2兩極化的擾動下表現出相反的結果,並且在調節肺癌細胞增生中扮演關鍵的角色。因此,這種多維蛋白質體學方法提升了我們對於治療性標的癌症特異性磷酸化蛋白的能力。
MYCN基因的擴增與腫瘤的產生和發展有關,並發生在約20% 神經母細胞瘤(NB),而其潛在的機制仍然難以捉摸。在本研究中,我們使用ChIP-seq和NB患者的基因表達綜合數據庫 (GEO) 去整合與MYCN結合的啟動子區域;當MYCN擴增(MNA)時,MTHFD2和PAICS的表現量顯著上調,並且我們發現MTHFD2和PAICS是受MYCN直接轉錄調控的基因,在NB的組織樣本和細胞株中皆呈正相關。進行標靶代謝體學研究使我們發現MNA NB細胞與非MNA細胞相比有顯著的絲氨酸耗損,而MNA NB 細胞的核苷單磷酸酯則大量增加。此外,雙重壓制MTHFD2和PAICS與減少細胞增生、集落形成和遷移能力具有協同的作用,而不管是單一或是雙重壓制的SK-N-DZ細胞都減少了絲氨酸的消耗。當MTHFD2和PAICS皆被抑制時,AICAR的損耗進一步限制了GMP的產生,這意味著MYCN可能同時標的MTHFD2和PAICS以調節代謝反應。我們系統性地辨識到的MTHFD2和PAICS基因表現在十種細胞株中分別被anisomycin和apicidin顯著地抑制。與單獨使用anisomycin或apicidin相比,anisomycin和apicidin的雙重治療對抑制MNA NB細胞增生具有協同作用。探索基因調控和分子網絡或許能夠為臨床應用和生物性標靶的發現提供值得的資訊。 | zh_TW |
| dc.description.abstract | Multi-omics approaches have launched the era of cancer research that enhance our understanding of complex interactions in biological systems, aim to reveal the underlying molecular mechanisms, and identify therapeutic targets. We performed multi-dimensional proteomic approach by integrating the phosphoproteome and proteome to uncover functional networks in lung cancer. MCM2 serves as a licensing factor that facilitates DNA unwinding at the origin of DNA replication. However, the biological networks of MCM2 in lung cancer cells via protein phosphorylation remain unmapped. By applying omics technologies, we identified a total of 2361 phosphorylation sites on 753 phosphoproteins, and 4672 proteins, and found that the deregulation of MCM2 is involved in lung cancer cell proliferation, the cell cycle, and migration. Furthermore, HMGA1S99 phosphorylation was found to be differentially expressed under MCM2 perturbation in opposite directions, and plays a pivotal role in regulating lung cancer cell proliferation. This multi-dimensional proteomic approach, therefore enhances our capacity to therapeutically target cancer-specific phosphoproteins.
Amplification of MYCN is associated with tumor initiation and progression, and occurs in approximately 20% of all neuroblastoma (NB), while the underlying mechanism still remains elusive. In this study, we integrated MYCN-bound promoter regions using ChIP−seq and GEO profiles of NB patients; MTHFD2 and PAICS were differentially up-regulated with MYCN amplification (MNA), and also we revealed that MTHFD2 and PAICS are the target genes of MYCN with a positive correlation in both tissue samples and cell lines of NB. Targeted metabolomics was performed and found that the MNA NB cells had significant serine depletion while the levels of nucleoside monophosphates had massively elevated compared to non-MNA cells. Furthermore, the dual knock-down of MTHFD2 and PAICS had synergistic effect on diminishing the cell proliferation, colony formation and migration abilities, and also the consumption of serine was decreased in either the single or the double knock-down SK-N-DZ cells. As the abundance of both MTHFD2 and PAICS was suppressed, the AICAR levels depleted which further limited the production of GMP, suggesting MYCN might target MTHFD2 and PAICS simultaneously to regulate metabolic reaction. We systematically identified the gene expression of MTHFD2 and PAICS are significantly suppressed by anisomycin and apicidin across ten cell lines, respectively. The cotreatment of anisomycin and apicidin showed synergistic effects on the inhibition of MNA NB cell proliferation, as compared with either anisomycin or apicidin treatment alone. By exploring the gene regulation and molecular networks might be able to provide valuable information for clinical applications and biomarker discovery. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:13:26Z (GMT). No. of bitstreams: 1 ntu-107-D02b43001-1.pdf: 7111736 bytes, checksum: e2d20ae8eef1bddfbd6c48b3a62aabe1 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………... I
ACKNOWLEDGEMENTS………………………………...…………………………II 中文摘要…………………………………...............................................……………V ABSTRACT…………………………………………………………......………….VII TABLE OF CONTENTS………………………………………………..……………IX LIST OF FIGURES…………………………………………………………….......XIV LIST OF TABLES………………………………………………………………..XVIII ABBREVIATION………………………….………………………………………XIX FOREWORD………………………………………………………………………XXI Chapter 1 Omics in Cancer Research……...…………………...………………………1 1.1 Introduction to Omics………………………………….…………………………1 1.2 Genomics and transcriptomics……………………………………………………2 1.3 Proteomics……………………………..…………………………………………4 1.4 Phosphoproteomics and metabolomics……………………………………….......6 1.5 Bioinformatics empowers multi-omics analysis in cancer……………………......8 Chapter 2 MCM2-regulated functional networks in lung cancer by multi- dimensional proteomic approach…………………………………................................9 2.1 Background……………………………………………………………………....9 2.1.1 Lung cancer……………………………………………………………........9 2.1.2 DNA replication…………………………………………………………....10 2.1.3 Protein Phosphorylation…………...………………………………………10 2.1.4 The MCM proteins…………………………………………………………11 2.2 Aims of study……………………………………………………………………13 2.3 Material and methods……………………………………………………………14 2.3.1 Analysis of TCGA data set…………………………...…………………….14 2.3.2 Cell lines and cell culture………………………………………………......14 2.3.3 Plasmid construction and DNA manipulation …………………..…………15 2.3.4 RNA interference…………………………………………………..………15 2.3.5 Sample preparation for phosphoproteome…………………………………16 2.3.6 Dimethyl labeling of peptides for phosphoproteome………………………17 2.3.7 Phosphopeptide enrichment…………………………………………..……18 2.3.8 NanoLC−MS/MS analysis for MCM2 phosphoproteome…........................19 2.3.9 Sample preparation for proteome…………………………………......……20 2.3.10 Isobaric tags for relative and absolute quantitation (iTRAQ) labeling..……21 2.3.11 Strong cation exchange (SCX) chromatography……………………...……22 2.3.12 Peptide desalting by ZipTip pipet tips………………………………...……22 2.3.13 NanoLC−MS/MS analysis for siMCM2 proteome …………………..……23 2.3.14 Phosphopeptide identification and phosphosite quantification……….……24 2.3.15 Protein identification and quantification…………………………..……….25 2.3.16 Functional annotation……………………………………………...………26 2.3.17 Cell proliferation assays……………………………………………………27 2.3.18 Cell cycle analysis…………………………………………………………27 2.3.19 Cell migration assays………………………………………………………28 2.3.20 Site-directed mutagenesis……………………………………………….....28 2.3.21 Immunoblot analysis…………………………………………………….....29 2.3.22 Statistical analysis………………………………………………………….30 2.3.23 Data availability……………………………………………………………30 2.4 Results…………………………………………………………………..………31 2.4.1 Overexpression of MCM2 correlates with poor survival rate in lung cancer patients……………....…………………………………………….…………………31 2.4.2 Quantitative phosphoproteome of lung cancer cells regulated by MCM2.…32 2.4.3 Quantitative proteome of lung cancer cells regulated by MCM2………..…33 2.4.4 Functional networks of MCM2-regulated proteins ……………………..…34 2.4.5 Validation of MCM2 functional networks on cell proliferation, cell cycles, and migration in lung cancer cells………………………………………………….…36 2.4.6 Identification of the MCM2-associated phosphoproteins……….................38 2.4.7 MCM2 regulates HMGA1 Ser99 in determining lung cancer cell viability...40 2.5 Discussion………………………………………………………………………42 Chapter 3 MYCN-mediated purine biosynthesis alters cancer metabolism via MTHFD2 and PAICS in neuroblastoma…………………………………………………………46 3.1. Background………………………………………………………………………46 3.1.1 MYCN in Neuroblastoma……………………………………………….....46 3.1.2 MYCN and metabolism……………………………………………………47 3.1.3 One carbon pool by folate and purine biosynthesis………………………...48 3.2 Aims of the study………………………………………………………………..50 3.3 Materials and methods………………………………………………………......52 3.3.1 Differential expression analysis…………………………………………....52 3.3.2 Public data sources and bioinformatics analysis……………………….......53 3.3.3 Cell culture………………………………………………………………...53 3.3.4 RNA isolation of neuroblastoma cells and patient tissues and cDNA synthesis ………………..........................................................……………………………54 3.3.5 Plasmid construction and DNA manipulation……………………………...55 3.3.6 RNA interference…………………………………………………………..55 3.3.7 qRT-PCR analysis………………………………………………………….56 3.3.8 Western blotting……………………………………………………………56 3.3.9 Luciferase reporter assay…………………………………………………..57 3.3.10 Generation of cell lines with stable knockdown of MTHFD2 and PAICS….58 3.3.11 Cell proliferation assays……………………………………………………58 3.3.12 Cell cycle analysis…………………………………………………………59 3.3.13 Cell migration assays………………………………………………………60 3.3.14 Cell harvest and extraction for targeted metabolomics assay………………60 3.3.15 Instrumentation, method development, and data analysis for targeted metabolism analysis…………………………………………………………………..61 3.3.16 Identification of potential compounds suppressing MTHFD2 or PAICS expression…………………………………………………………………………….62 3.3.17 Drug combination assay…………………………………………………....63 3.3.18 Statistical analysis……………………………………………………….....64 3.4 Results…………………………………………………………………………..65 3.4.1 Integrated analysis of multi-layer omics data reveals higher cellular metabolic activities in MNA neuroblastoma……………………………………….....65 3.4.2 MTHFD2 and PAICS expression are strongly correlated to MYCN status …………………………………………………………………....……………..67 3.4.3 MTHFD2 and PAICS are transcriptional targets of MYCN……………..…69 3.4.4 Synergistic effect of MTHFD2 and PAICS on the prognosis of neuroblastoma patients…………………………………………………………….…70 3.4.5 Dual knockdown of MTHFD2 and PAICS suppresses neuroblastoma cell growth and migration ability…………………………………………………..…71 3.4.6 MYCN-mediated metabolic enzymes MTHFD2 and PAICS participate in purine biosynthesis………………………………………………………………...…73 3.4.7 Knockdown of MTHFD2 and PAICS interrupts cell cycle at S phase in MNA neuroblastoma………………………………………………………………………75 3.4.8 Synergistic effect of combined treatment in MNA neuroblastoma…………76 3.5 Discussion………………………………………………………………………77 Chapter 4 Conclusions and future perspectives…………….........................................80 REFERENCES…………………………………………………………………….…84 FIGURES…...………………………………………………………………………101 TABLES…….………………………………………………………………………142 APPENDIX…………………………………………………………….…………...164 Publication List…...…………………………………………………………………164 | |
| dc.language.iso | en | |
| dc.subject | PAICS | zh_TW |
| dc.subject | 多體學 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 神經母細胞瘤 | zh_TW |
| dc.subject | MCM2 | zh_TW |
| dc.subject | MYCN | zh_TW |
| dc.subject | MTHFD2 | zh_TW |
| dc.subject | MTHFD2 | en |
| dc.subject | Multi-omics | en |
| dc.subject | lung cancer | en |
| dc.subject | neuroblastoma | en |
| dc.subject | MCM2 | en |
| dc.subject | MYCN | en |
| dc.subject | PAICS | en |
| dc.title | 利用多種體學尋找癌症治療標的並探討其分子功能 | zh_TW |
| dc.title | Multi-omics approaches toward identifying therapeutic targets and understanding their molecular functions in cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃宣誠(Hsuan-Cheng Huang),許家郎(Chia-Lang Hsu),王憶卿(Yi-Ching Wang),李岳倫(Alan Yueh-luen Lee),黃翠琴(Tsui-Chin Huang) | |
| dc.subject.keyword | 多體學,肺癌,神經母細胞瘤,MCM2,MYCN,MTHFD2,PAICS, | zh_TW |
| dc.subject.keyword | Multi-omics,lung cancer,neuroblastoma,MCM2,MYCN,MTHFD2,PAICS, | en |
| dc.relation.page | 164 | |
| dc.identifier.doi | 10.6342/NTU201801301 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-12 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
