請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | |
| dc.contributor.author | I-LING CHEN | en |
| dc.contributor.author | 陳怡伶 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:13:20Z | - |
| dc.date.available | 2028-07-22 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-12 | |
| dc.identifier.citation | [1] R. L. Siegel, K. D. Miller, and A. Jemal, 'Cancer statistics, 2018,' CA: a cancer journal for clinicians, vol. 68, pp. 7-30, 2018.
[2] C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, 'Breast cancer statistics, 2017, racial disparity in mortality by state,' CA: a cancer journal for clinicians, vol. 67, pp. 439-448, 2017. [3] N. Howlader, A. M. Noone, M. Krapcho, D. Miller, k. Bishop, S. F. Altekruse, C. L. Kosary, M. Yu, J. Ruhl, Z. Tatalovich, A. Mariotto, D. R. Lewis, H. S. Chen, E. J. Feuer, and K. A. Cronin. (April 2016). SEER Cancer Statistics Review. [4] W. A. Berg, J. D. Blume, J. B. Cormack, E. B. Mendelson, D. Lehrer, M. Bohm-Velez, E. D. Pisano, R. A. Jong, W. P. Evans, M. J. Morton, M. C. Mahoney, L. H. Larsen, R. G. Barr, D. M. Farria, H. S. Marques, K. Boparai, and A. Investigators, 'Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer,' Jama-Journal of the American Medical Association, vol. 299, pp. 2151-2163, May 14 2008. [5] E. B. Mendelson, W. A. Berg, and C. R. Merritt, 'Toward a standardized breast ultrasound lexicon, BI-RADS: ultrasound,' in Seminars in roentgenology, 2001, pp. 217-225. [6] A. T. Stavros, D. Thickman, C. L. Rapp, M. A. Dennis, S. H. Parker, and G. A. Sisney, 'Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions,' Radiology, vol. 196, pp. 123-134, Jul 1995. [7] W. K. Moon, Y.-W. Lee, Y.-S. Huang, S. H. Lee, M. S. Bae, A. Yi, C.-S. Huang, and R.-F. Chang, 'Computer-Aided Prediction of Axillary Lymph Node Status in Breast Cancer Using Tumor Surrounding Tissue Features in Ultrasound Images,' Computer Methods and Programs in Biomedicine, 2017. [8] M. S. Bae, S. U. Shin, S. E. Song, H. S. Ryu, W. Han, and W. K. Moon, 'Association between US features of primary tumor and axillary lymph node metastasis in patients with clinical T1–T2N0 breast cancer,' Acta Radiologica, p. 0284185117723039, 2017. [9] W. C. Shen, R. F. Chang, W. K. Moon, Y. H. Chou, and C. S. Huang, 'Breast ultrasound computer-aided diagnosis using BI-RADS features,' Academic Radiology, vol. 14, pp. 928-939, Aug 2007. [10] M. Masotti and R. Campanini, 'Texture classification using invariant ranklet features,' Pattern Recognition Letters, vol. 29, pp. 1980-1986, 2008. [11] C. M. Lo, W. K. Moon, C. S. Huang, J. H. Chen, M. C. Yang, and R. F. Chang, 'Intensity-Invariant Texture Analysis for Classification of BI-RADS Category 3 Breast Masses,' Ultrasound in Medicine & Biology, vol. 41, pp. 2039–2048, July 2015. [12] W. K. Moon, C. M. Lo, C. S. Huang, J. H. Chen, and R. F. Chang, 'Computer-Aided Diagnosis Based on Speckle Patterns in Ultrasound Images,' Ultrasound in Medicine and Biology, vol. 38, pp. 1251-1261, Jul 2012. [13] T. M. Kolb, J. Lichy, and J. H. Newhouse, 'Occult cancer in women with dense breasts: detection with screening US--diagnostic yield and tumor characteristics.,' Radiology, vol. 207, pp. 191-199, April 1998. [14] U. Veronesi, N. Cascinelli, L. Mariani, M. Greco, R. Saccozzi, A. Luini, M. Aguilar, and E. Marubini, 'Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer,' New England Journal of Medicine, vol. 347, pp. 1227-1232, 2002. [15] N. Bundred, 'Prognostic and predictive factors in breast cancer,' Cancer treatment reviews, vol. 27, pp. 137-142, 2001. [16] W. A. Berg, 'Rationale for a trial of screening breast ultrasound: American College of Radiology Imaging Network (ACRIN) 6666,' AJR Am J Roentgenol, vol. 180, pp. 1225-8, May 2003. [17] S. Buseman, J. Mouchawar, N. Calonge, and T. Byers, 'Mammography screening matters for young women with breast carcinoma - Evidence of downstaging among 42-49-year-old women with a history of previous mammography screening,' Cancer, vol. 97, pp. 352-358, Jan 15 2003. [18] P. C. Gøtzsche and M. Nielsen, 'Screening for breast cancer with mammography,' Cochrane Database of Systematic Reviews, vol. 4.1, 2009. [19] M. Kalager, M. Zelen, F. Langmark, and H. O. Adami, 'Effect of Screening Mammography on Breast-Cancer Mortality in Norway,' New Engl J Med, vol. 373, pp. 1203-1210, 2010. [20] E. K.-F. A. Patricia Harper, and J. Stephen Noe, 'Ultrasound breast imaging—the method of choice for examining the young patient,' Ultrasound in medicine & biology, vol. 7, pp. 231-237, 1981. [21] M. V. Peeters, 'Axillary staging: new approaches and treatment of minimal disease,' Breast Cancer Research, vol. 11, p. S6, 2009. [22] D. Ivens, A. Hoe, T. Podd, C. Hamilton, I. Taylor, and G. Royle, 'Assessment of morbidity from complete axillary dissection,' British Journal of Cancer, vol. 66, p. 136, 1992. [23] J. S. Ecanow, H. Abe, G. M. Newstead, D. B. Ecanow, and J. M. Jeske, 'Axillary staging of breast cancer: what the radiologist should know,' Radiographics, vol. 33, pp. 1589-1612, 2013. [24] H. Abe, D. Schacht, K. Kulkarni, A. Shimauchi, K. Yamaguchi, C. A. Sennett, and Y. Jiang, 'Accuracy of axillary lymph node staging in breast cancer patients: an observer-performance study comparison of MRI and ultrasound,' Academic Radiology, vol. 20, pp. 1399-1404, 2013. [25] A. Damera, A. Evans, E. Cornford, A. Wilson, H. Burrell, J. James, S. Pinder, I. Ellis, A. Lee, and R. Macmillan, 'Diagnosis of axillary nodal metastases by ultrasound-guided core biopsy in primary operable breast cancer,' British Journal of Cancer, vol. 89, p. 1310, 2003. [26] P. A. de Camargo Teixeira, L. F. Chala, C. Shimizu, J. R. Filassi, J. Y. Maesaka, and N. de Barros, 'Axillary Lymph Node Sonographic Features and Breast Tumor Characteristics as Predictors of Malignancy: A Nomogram to Predict Risk,' Ultrasound in Medicine and Biology, vol. 43, pp. 1837-1845, 2017. [27] L. Tabár and P. B. Dean, 'A new era in the diagnosis and treatment of breast cancer,' The Breast Journal, vol. 16, 2010. [28] B. Cady, M. D. Stone, J. G. Schuler, R. Thakur, M. A. Wanner, and P. T. Lavin, 'The new era in breast cancer: invasion, size, and nodal involvement dramatically decreasing as a result of mammographic screening,' Archives of Surgery, vol. 131, pp. 301-308, 1996. [29] C. L. Carter, C. Allen, and D. E. Henson, 'Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases,' Cancer, vol. 63, pp. 181-187, 1989. [30] H. M. Zonderland, E. G. Coerkamp, J. Hermans, M. J. v. d. Vijver, and A. E. v. Voorthuisen, 'Diagnosis of breast cancer: Contribution of US as an adjunct to mammography,' Radiology, vol. 213, pp. 413-422, 1999. [31] T. M. Kolb, J. Lichy, and J. H. Newhouse, 'Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations,' Radiology, vol. 225, pp. 165-175, 2002. [32] J. A. Baker and M. S. Soo, 'Breast US: Assessment of technical quality and image interpretation,' Radiology, vol. 223, pp. 229-238, Apr 2002. [33] G. Rizzatto, 'Towards a more sophisticated use of breast ultrasound,' European Radiology, vol. 11, pp. 2425-2435, 2001. [34] S. Raza, A. L. Goldkamp, S. A. Chikarmane, and R. L. Birdwell, 'US of breast masses categorized as BI-RADS 3, 4, and 5: pictorial review of factors influencing clinical management,' Radiographics, vol. 30, pp. 1199-1213, 2010. [35] Y. R. Kim, H. S. Kim, and H.-W. Kim, 'Are irregular hypoechoic breast masses on ultrasound always malignancies?: a pictorial essay,' Korean Journal of Radiology, vol. 16, pp. 1266-1275, 2015. [36] J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science vol. 3: Cambridge university press, 1999. [37] K. Patel and J. Jha, 'Brain tumor image segmentation using adaptive clustering and level set method,' image, vol. 1, p. 9, 2014. [38] J.-Z. Cheng, Y.-H. Chou, C.-S. Huang, Y.-C. Chang, C.-M. Tiu, K.-W. Chen, and C.-M. Chen, 'Computer-aided US Diagnosis of Breast Lesions by Using Cell-based Contour Grouping,' Radiology, vol. 255, pp. 746-754, 2010. [39] W. K. Moon, S. C. Chang, C. S. Huang, and R. F. Chang, 'Breast Tumor Classification Using Fuzzy Clustering for Breast Elastography,' Ultrasound in Medicine and Biology, vol. 37, pp. 700-708, May 2011. [40] C. M. Lo, Y. P. Chen, Y. C. Chang, C. Lo, C. S. Huang, and R. F. Chang, 'Computer-aided strain evaluation for acoustic radiation force impulse imaging of breast masses,' Ultrasonic imaging, vol. 36, pp. 151-166, 2014. [41] H. D. Cheng, J. Shan, W. Ju, Y. H. Guo, and L. Zhang, 'Automated breast cancer detection and classification using ultrasound images: A survey,' Pattern Recognition., vol. 43, pp. 299-317, 2010. [42] J. M. Chang, W. K. Moon, N. Cho, J. S. Park, and S. J. Kim, 'Breast cancers initially detected by hand-held ultrasound: Detection performance of radiologists using automated breast ultrasound data,' Acta Radiol., vol. 52, pp. 8-14, 2011. [43] P. Crystal, S. D. Strano, S. Shcharynski, and M. J. Koretz, 'Using sonography to screen women with mammographically dense breasts,' AJR Am. J. Roentgenol., vol. 181, pp. 177-182, 2003. [44] O. S. Al-Kadi, D. Y. Chung, R. C. Carlisle, C. C. Coussios, and J. A. Noble, 'Quantification of ultrasonic texture intra-heterogeneity via volumetric stochastic modeling for tissue characterization,' Medical image analysis, vol. 21, pp. 59-71, 2015. [45] P. Kovesi, 'Image features from phase congruency,' Videre: Journal of computer vision research, vol. 1, pp. 1-26, 1999. [46] C. M. Lo, R. T. Chen, Y. C. Chang, Y. W. Yang, M. J. Hung, C. S. Huang, and R. F. Chang, 'Multi-dimensional Tumor Detection in Automated Whole Breast Ultrasound using Topographic Watershed,' IEEE Trans Med Imaging, 2014. [47] R.-F. Chang, C.-J. Chen, M.-F. Ho, D.-R. Chen, and W. K. Moon, 'Breast ultrasound image classification using fractal analysis,' in Bioinformatics and Bioengineering, 2004. BIBE 2004. Proceedings. Fourth IEEE Symposium on, 2004, pp. 100-107. [48] O. S. Al-Kadi and D. Watson, 'Texture analysis of aggressive and nonaggressive lung tumor CE CT images,' IEEE transactions on biomedical engineering, vol. 55, pp. 1822-1830, 2008. [49] G. Hughes, 'On the mean accuracy of statistical pattern recognizers,' IEEE transactions on information theory, vol. 14, pp. 55-63, 1968. [50] B.-C. Kuo, I.-L. Chen, C.-H. Li, and C.-C. Hung, 'Combining ensemble technique of support vector machines with the optimal kernel method for hyperspectral image classification,' in Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 2011, pp. 3903-3906. [51] M. Khan and S. M. K. Quadri, 'Effect of using filter based feature selection on performance of machine learners using different datasets,' BVICAM’s International Journal of Information Technology, vol. 5, pp. 597-603, 2013. [52] D. W. Hosmer, Applied logistic regression. 2nd edition. New York: Wiley, 2000. [53] T. Ayer, J. A. Chhatwal, O., C. E. Kahn Jr, R. W. Woods, and E. S. Burnside, 'Comparison of Logistic Regression and Artificial Neural Network Models in Breast Cancer Risk Estimation,' Radiographics, vol. 30, pp. 13-22, 2010. [54] I. H. Lee, G. H. Lushington, and M. Visvanathan, 'A filter-based feature selection approach for identifying potential biomarkers for lung cancer,' Journal of clinical Bioinformatics, vol. 1, pp. 1-8, 2011. [55] J. S. Suri, Advances in diagnostic and therapeutic ultrasound imaging. Boston, London: Artech House, 2008. [56] B. Jahne, Digital image processing vol. 4: Springer, 2005. [57] S. Annadurai, Fundamentals of digital image processing: Pearson Education India, 2007. [58] P. Soille. (2003). Morphological image analysis: Principles and applications. [59] K. Nie, J. H. Chen, H. J. Yu, Y. Chu, O. Nalcioglu, and M. Y. Su, 'Quantitative Analysis of Lesion Morphology and Texture Features for Diagnostic Prediction in Breast MRI,' Academic Radiology, vol. 15, pp. 1513-1525, Dec 2008. [60] R. M. Rangayyan, N. R. Mudigonda, and J. E. L. Desautels, 'Boundary modelling and shape analysis methods for classification of mammographic masses,' Medical and Biological Engineering and Computing, vol. 38, pp. 487-496, Sep 2000. [61] W. C. Shen, R. F. Chang, and W. K. Moon, 'Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS),' Ultrasound in Medicine and Biology, vol. 33, pp. 1688-1698, Nov 2007. [62] R. M. Haralick and K. Shanmugam, 'Textural features for image classification,' IEEE Transactions on systems, man, and cybernetics, vol. 6, pp. 610-621, 1973. [63] B. D. Fornage, N. Sneige, M. J. Faroux, and E. Andry, 'Sonographic Appearance and Ultrasound-Guided Fine-Needle Aspiration Biopsy of Breast Carcinomas Smaller Than 1 Cm3,' Journal of Ultrasound in Medicine, vol. 9, pp. 559-568, Oct 1990. [64] W. K. Moon, C. M. Lo, J. M. Chang, C. S. Huang, J. H. Chen, and R. F. Chang, 'Computer-aided classification of breast masses using speckle features of automated breast ultrasound images,' Medical Physics, vol. 39, pp. 6465-6473, Oct 2012. [65] M.-C. Yang, W. K. Moon, Y.-C. F. Wang, M. S. Bae, C.-S. Huang, J.-H. Chen, and R.-F. Chang, 'Robust texture analysis using multi-resolution gray-scale invariant features for breast sonographic tumor diagnosis,' IEEE Transactions on Medical Imaging, vol. 32, pp. 2262-2273, 2013. [66] A. P. Field, Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications, 2009. [67] S. C. Chen, Y. C. Cheung, C. H. Su, M. F. Chen, T. L. Hwang, and S. Hsueh, 'Analysis of sonographic features for the differentiation of benign and malignant breast tumors of different sizes,' Ultrasound in obstetrics & gynecology, vol. 23, pp. 188-193, 2004. [68] A. Pfefferbaum, J. M. Ford, and H. C. Kraemer, 'Clinical utility of long latency ‘cognitive’ event-related potentials (P3): the cons,' Electroencephalography and clinical neurophysiology, vol. 76, pp. 6-12, 1990. [69] B. Weigelt, J. L. Peterse, and L. J. Van't Veer, 'Breast cancer metastasis: markers and models,' Nature reviews cancer, vol. 5, pp. 591-602, 2005. [70] P. Schrenk, R. Rieger, A. Shamiyeh, and W. Wayand, 'Morbidity following sentinel lymph node biopsy versus axillary lymph node dissection for patients with breast carcinoma,' Cancer, vol. 88, pp. 608-614, 2000. [71] A. E. Giuliano, K. K. Hunt, K. V. Ballman, P. D. Beitsch, P. W. Whitworth, P. W. Blumencranz, A. M. Leitch, S. Saha, L. M. McCall, and M. Morrow, 'Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial,' Jama, vol. 305, pp. 569-575, 2011. [72] J. L. B. Bevilacqua, M. W. Kattan, J. V. Fey, H. S. Cody III, P. I. Borgen, and K. J. Van Zee, 'Doctor, what are my chances of having a positive sentinel node? A validated nomogram for risk estimation,' Journal of Clinical Oncology, vol. 25, pp. 3670-3679, 2007. [73] C. Coutant, C. Olivier, E. Lambaudie, E. Fondrinier, F. Marchal, F. Guillemin, N. Seince, V. Thomas, J. Levêque, and E. Barranger, 'Comparison of models to predict nonsentinel lymph node status in breast cancer patients with metastatic sentinel lymph nodes: a prospective multicenter study,' Journal of Clinical Oncology, vol. 27, pp. 2800-2808, 2009. [74] A. De Kanter, A. Van Geel, M. Paul, C. van Eijck, S. Henzen-Logmans, R. Kruyt, E. Krenning, A. Eggermont, and T. Wiggers, 'Controlled introduction of the sentinel node biopsy in breast cancer in a multi-centre setting: the role of a coordinator for quality control,' European Journal of Surgical Oncology (EJSO), vol. 26, pp. 652-656, 2000. [75] S. Alvarez, E. Añorbe, P. Alcorta, F. López, I. Alonso, and J. Cortés, 'Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review,' American Journal of Roentgenology, vol. 186, pp. 1342-1348, 2006. [76] S. Mussurakis, D. L. Buckley, and A. Horsman, 'Prediction of axillary lymph node status in invasive breast cancer with dynamic contrast-enhanced MR imaging,' Radiology, vol. 203, pp. 317-321, 1997. [77] J. Wang and M. F. Cohen, 'Optimized color sampling for robust matting,' in Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, 2007, pp. 1-8. [78] W. K. Moon, I.-L. Chen, J. M. Chang, S. U. Shin, C.-M. Lo, and R.-F. Chang, 'The adaptive computer-aided diagnosis system based on tumor sizes for the classification of breast tumors detected at screening ultrasound,' Ultrasonics, vol. 76, pp. 70-77, 2017. [79] J. M. Thijssen, B. J. Oosterveld, and R. F. Wagner, 'Gray level transforms and lesion detectability in echographic images,' Ultrason Imaging, vol. 10, pp. 171-195, 1988. [80] F. K. Quek and C. Kirbas, 'Vessel extraction in medical images by wave-propagation and traceback,' IEEE Trans Med Imaging, vol. 20, pp. 117-131, 2001. [81] R. Deriche, 'Fast Algorithms for Low-Level Vision,' IEEE Trans. Pattern Anal., vol. 12, pp. 78-87, Jan 1990. [82] W. K. Moon, C.-M. Lo, J. M. Chang, C.-S. Huang, J.-H. Chen, and R.-F. Chang, 'Quantitative Ultrasound Analysis for Classification of BI-RADS Category 3 Breast Masses,' Journal of Digital Imaging, pp. 1-8, 2013. [83] W. K. Moon, C.-M. Lo, N. Cho, J. M. Chang, C.-S. Huang, J.-H. Chen, and R.-F. Chang, 'Computer-aided diagnosis of breast masses using quantified BI-RADS findings,' Computer Methods and Programs in Biomedicine, vol. 111, pp. 84-92, 2013. [84] T. A. Tuthill, J. Krücker, J. B. Fowlkes, and P. L. Carson, 'Automated three-dimensional US frame positioning computed from elevational speckle decorrelation,' Radiology, vol. 209, pp. 575-582, 1998. [85] R. S. Adler, J. M. Rubin, J. B. Fowlkes, P. L. Carson, and J. E. Pallister, 'Ultrasonic estimation of tissue perfusion: a stochastic approach,' Ultrasound in medicine & biology, vol. 21, pp. 493-500, 1995. [86] B. B. Fisher, M.; Wickerham, D.; Redmond, C.K.; Fisher, E.R., 'Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer: an NSABP update. ,' Cancer, vol. 52, pp. 1551-1557, 1 November 1983. [87] N. Weidner, J. Folkman, F. Pozza, P. Bevilacqua, E. N. Allred, D. H. Moore, S. Meli, and G. Gasparini, 'Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma,' JNCI: Journal of the National Cancer Institute, vol. 84, pp. 1875-1887, 1992. [88] H. Liu, T. Tan, J. van Zelst, R. Mann, N. Karssemeijer, and B. Platel, 'Incorporating texture features in a computer-aided breast lesion diagnosis system for automated three-dimensional breast ultrasound,' Journal of Medical Imaging, vol. 1, p. 024501, 2014. [89] S. K. Ahn, M. K. Kim, J. Kim, E. Lee, T.-K. Yoo, H.-B. Lee, Y. J. Kang, J. Kim, H.-G. Moon, and J. M. Chang, 'Can We Skip Intraoperative Evaluation of Sentinel Lymph Nodes? Nomogram Predicting Involvement of Three or More Axillary Lymph Nodes before Breast Cancer Surgery,' Cancer Res Treat, 2017. [90] W. Gómez, W. Pereira, and A. F. C. Infantosi, 'Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound,' IEEE Transactions on Medical Imaging, vol. 31, pp. 1889-1899, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69342 | - |
| dc.description.abstract | 乳癌是目前女性癌症患者中第二大的死亡主因,隨著醫療持續發展,患者的五年存活率也大幅提升;然而,一旦發生癌細胞轉移,病灶擴散至腋窩淋巴結或是身體的其他器官,死亡率也將急遽上升。為此,許多篩檢工具以及診斷技術不斷革新,希望能在癌症初期盡早發現腫瘤,並能及時診斷,以進行最適當的治療策略。乳房超音波即是一項應運而生的重要篩檢技術,作為乳房攝影的輔助工具,超音波成像能發現相較於可觸診腫瘤更小體積、更為早期的可疑變異組織;許多的電腦輔助偵測和診斷系統,也應用大量蒐集的超音波影像搭配影像處理技術,發展更有效率的標準化腫瘤評估程序。儘管如此,許多作為乳癌診斷依據的影像特徵,隨著腫瘤體積的發展,才會愈趨具有區辨能力,因此,要在癌症初期做出正確的診斷並對症下藥,仍然是一件相當困難的事。為了解決分類學習過程中,小腫瘤的辨識特徵效能不佳的問題,本研究特別針對篩檢所取得的超音波影像資料集,發展電腦輔助診斷系統,並設計了依據腫瘤大小進行分類器分流建構的過濾器,有效提升診斷腫瘤良、惡性的自動分類準確度;進一步,更利用在乳房超音波所取得的腫瘤量化特徵,發展淋巴結轉移的自動預測模型。由於腋窩淋巴結狀態是用來評判是否發生乳癌轉移的至關要素,這項突破性的研究,特別依據乳房影像報告與資料系統所定義的腫瘤描述,將臨床上用來進行癌症分期的特徵,進行完整的特徵分析,並藉由腫瘤特徵取代腋窩淋巴結特徵,發展自動評估轉移風險的輔助工具。隨著乳癌早期檢測的推展,一些用以診斷轉移的腋窩淋巴結特性也隨之減少,放射科醫師在發現可疑組織的當下,將可利用本研究所開發的電腦輔助診斷系統,進行腫瘤良、惡性的分類,並在手術前取得轉移可能發生的風險評估,給予患者最佳的治療策略,達到早期診斷早期治療的目標。 | zh_TW |
| dc.description.abstract | Breast ultrasound (US) as a supplement to mammography has been used to verify the diagnostic ability for palpable lesions, and computer-aided diagnosis (CAD) techniques have been developed with various features extracted from US images. However, the diagnostic values of partial features are only feasible for predicting malignancy in tumors larger than 1 cm. An adaptive CAD model based on tumor size was proposed to classify breast tumors detected at screening US images using quantitative morphological and textural features. In addition, axillary lymph node (ALN) status is a key indicator in assessing and determining the treatment strategy for patients with newly diagnosed breast cancer. Previous studies suggest that sonographic features of a primary tumor have the potential to predict ALN status in the preoperative staging of breast cancer. In this study, a computer-aided prediction (CAP) model as well as the tumor features for ALN metastasis in breast cancers were developed using breast US images. In the present study, a screening database containing 156 tumors (78 benign and 78 malignant) was separated into two subsets of different tumor sizes (<1 cm and ≥1 cm) to explore the improvement in the performance of the CAD system for breast cancer. The other database containing 249 malignant tumors was acquired to test the differences between the non-metastatic (130) and metastatic (119) groups based on various features. Experiments show the CAD system can be helpful to classify breast tumors detected at screening US by the adaptive CAD model, as well as may useful for determining the ALN status in patients with breast cancer by the CAP model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:13:20Z (GMT). No. of bitstreams: 1 ntu-107-D00922027-1.pdf: 1744283 bytes, checksum: 6dc5d81e04af869d435088fb50aad31e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
ACKNOWLEDGEMENTS ii 摘要 iii ABSTRACT v Table of Contents vii List of Figures x List of Tables xii Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Issue Descriptions 3 1.2.1 Breast tumor diagnosis with screening ultrasound 3 1.2.2 Axillary lymph node staging in breast cancer 5 1.3 Organization of Thesis 6 Chapter 2 Literature Review of Computer-aided Diagnosis for Breast Ultrasound 8 2.1 Breast Ultrasound 8 2.2 Breast tumor Classification 12 2.3 Computer-aided Diagnosis 13 2.3.1 Image pre-processing 14 2.3.2 Tumor segmentation 14 2.3.3 Feature quantification 15 2.3.4 Decision model construction 16 Chapter 3 The Adaptive Computer-aided Diagnosis System based on Tumor Sizes for the Classification of Breast Tumors Detected at Screening Ultrasound 18 3.1 Introduction 18 3.2 Materials and Methods 19 3.2.1 Patients and data acquisition 20 3.2.2 Tumor segmentation 21 3.2.3 Feature quantification 24 3.2.4 Adaptive filtering 28 3.2.5 Prediction model 29 3.2.6 Statistical analysis 30 3.3 Results 31 3.4 Discussion 35 Chapter 4 Computer-aided Prediction Model for Axillary Lymph Node Metastasis in Breast Cancer using Tumor Morphological and Textural Features on Ultrasound 41 4.1 Introduction 41 4.2 Materials and Methods 43 4.2.1 Patients and data acquisition 43 4.2.2 Tumor segmentation 44 4.2.3 Feature quantification 45 4.2.4 Statistical analysis 49 4.3 Results 50 4.4 Discussion 56 Chapter 5 Conclusion and Future Directions 60 5.1 Conclusion 60 5.2 Future Work 62 References 64 | |
| dc.language.iso | en | |
| dc.subject | 腋窩淋巴結轉移 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 電腦輔助診斷 | zh_TW |
| dc.subject | 超音波篩檢 | zh_TW |
| dc.subject | 預測模型 | zh_TW |
| dc.subject | Breast cancer | en |
| dc.subject | screening ultrasound | en |
| dc.subject | axillary lymph node metastasis | en |
| dc.subject | computer-aided diagnosis | en |
| dc.subject | prediction model | en |
| dc.title | 應用於乳房超音波影像分類之電腦輔助診斷 | zh_TW |
| dc.title | Computer-aided Diagnosis for the Classification of Breast Ultrasound Images | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林守德,張智星,黃升龍,羅崇銘 | |
| dc.subject.keyword | 乳癌,超音波篩檢,腋窩淋巴結轉移,電腦輔助診斷,預測模型, | zh_TW |
| dc.subject.keyword | Breast cancer,screening ultrasound,axillary lymph node metastasis,computer-aided diagnosis,prediction model, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201801178 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
