請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69339完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝馬利歐(Mario Hofmann) | |
| dc.contributor.author | Chi-Lun Tsai | en |
| dc.contributor.author | 蔡季倫 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:13:17Z | - |
| dc.date.available | 2020-09-03 | |
| dc.date.copyright | 2020-09-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | [1] Romana Schirhagl, Kevin Chang, Michael Loretz, and Christian L. Degen , Annu. Rev. Phys. Chem. 2014. 65:83–105 [2] H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, D. Rugar, SCIENCE VOL 339 1 FEBRUARY 2013 [3] Jan Jeske, Desmond W.M. Lau, Xavier Vidal, Liam P. McGuinness, Philipp Reineck, Brett C. Johnson, Marcus W. Doherty, Jeffrey C. McCallum, Shinobu Onoda, Fedor Jelezko, Takeshi Ohshima, Thomas Volz, Jared H. Cole, Brant C. Gibson Andrew D. Greentree, NATURE COMMUNICATIONS 27 Jan 2017 [4] Ifor D. W. Samuel, Ebinazar B. Namdas and Graham A. Turnbull , nature photonics | VOL 3 | OCTOBER 2009 [5] Susanta Kumar Das, Martin Bock, Christopher O’Neill, Ruediger Grunwald, Kyung Moon Lee, Hwang Woon Lee, Soonil Lee, and Fabian Rotermund, Appl. Phys. Lett. 93, 181112 (2008) [6] DIEDERIK S. WIERSMA, nature physics VOL4 MAY2008 p.359~p.367 [7] Noel H. Wan, Brendan J. Shields, Donggyu Kim, Sara Mouradian, Benjamin Lienhard, Michael Walsh, Hassaram Bakhru, Tim Schröder, and Dirk Englund, Nano Lett. 2018, 18, 2787−2793 [8] Daniel Albach. Amplified Spontaneous Emission and Thermal Management on a High Average-Power Diode-Pumped Solid-State Laser – The Lucia Laser System. Atomic Physics [physics.atom-ph]. Ecole Polytechnique X, 2010. English p.7~p.9 [9] SHYH WANG, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-10, NO.4, APRIL 1974 [10] Markus Pollnau, Applied Physics B (2019) 125:25 [11] M. Łuszczek, R. Laskowski, P. Horodecki , Physica B 348 (2004) 292–298 [12] Bernhard Dischler, Handbook of Spectral Lines in Diamond Volume 1: Tables and Interpretations With 203 Tables [13] MELVIN LAX, J. Chem. Phys. 20, 1752 (1952) [14] Yifu Zhu, OpticsCommunications105(1994) 253-262 [15] Antonio Agnesi, Federico Pirzio, and Giancarlo Reali, 25 May 2009 / Vol. 17, No. 11 / OPTICS EXPRESS 9172 [16] Gustav Lindgren, Pumping and population inversion- Laser amplification, Retrieved from https://is.gd/gSCCDK 2015-02-12 [17] Iain D. Baikie, Angela C. Grain, James Sutherland, Jamie Law, Applied Surface Science 323 (2014) 45–53 [18] G. KOSCHEK, Journal of Microscopy, Vol.171, Pt 3, September 1993. P.223-232 [19] John R. Ferraro, Introductory Raman Spectroscopy 2nd Edition [20] Tal Schwartz, Guy Bartal, Shmuel Fishman Mordechai Segev, Nature Vol 446|1 March 2007 p.52-55 [21] Shojaie, Ehsan, Madanipour, Khosro, Ehsan Shojaie, Khosro Madanipour, 'Detection of nanoparticle changes in nanocomposite active sample using random laser emission,' Proc. SPIE 10330, Modeling Aspects in Optical Metrology VI, 103301L (26 June 2017) [22] Shova D. Subedi, Vladimir V. Fedorov, Jeremy Peppers, Dmitry V. Martyshkin, Sergey B. Mirov, Linbo Shao, and Marko Loncar, Optical Materials Express Vol.9 Issue 5, pp. 2076-2087(2019) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69339 | - |
| dc.description.abstract | 在鑽石晶格結構之中可以存有許多的缺陷,例如:不同的原子、空缺、同位素的參雜。至今為止,已知鑽石擁有超過五百種不同的缺陷結構並且都具有不同的光學性質。在這份研究中我們將會探索將具有缺陷的鑽石應用在寬頻雷射的可能性,奈米鑽石在受到離子輻射後,奈米鑽石中不同的缺陷將會放出介於380奈米到800奈米間波長的光子。光學與電子光譜的相關性指出奈米鑽石結構中可存有2到5個氮原子或者缺陷。而布拉格分散式反射器共振腔實驗展示我們可以在寬頻光譜中選定特定的波長使其雷射。基於這些優點,我們設計了隨機雷射的裝置。我們同時利用鑽石為增益介質以及隨機反射共振腔,藉此簡化了光學裝置的製程。隨機鑽石雷射裝置在整個可見光譜上呈現了大量且清晰可分別的峰值,也就是白光雷射。奈米鑽石雷射具有簡易製造的特性以及在高能量下的穩定性對於生命科學與電子學未來的應用具有巨大的潛力。 | zh_TW |
| dc.description.abstract | The diamond lattice can host a multitude of defects, such as heteroatoms, vacancies, and isotopic impurities. To date over 500 different defect structures have been identified by their own unique optical emission and absorption properties. We here exploit the coexistence of different and complex defects for the simulation of optical emission in broadband lasing. Upon illumination of ion-irradiated nanodiamond, optoelectronic interaction in different defects generates enhanced emission in a broad wavelength range between 380nm and 800nm. Correlation of optical and electron spectroscopy indicates the presence of nitrogen and vacancy clusters with 2-5 constituents. Cavity experiments demonstrate the ability to stimulate emission for different defects over a wide illumination range. Based on these advances, random lasers were designed, that utilize diamond as both the gain and scattering medium, thus simplifying the production of optoelectronic devices. The resulting device exhibits a multitude of distinct and sharp emission peaks throughout the visible spectrum, yielding white-light lasing. The facile fabrication and high power stability of diamond-based defect lasers have significant potential for future applications in life-sciences and electronics. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:13:17Z (GMT). No. of bitstreams: 1 U0001-1808202015090900.pdf: 18986919 bytes, checksum: 2c77b05f16bc32427aac88539a9c17ad (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Acknowledgement.........................................................................................................I Chinese Abstract...........................................................................................................II Abstract........................................................................................................................III Catalog of Figure.........................................................................................................IV Catalog of Table............................................................................................................V Chapter 1 : Introduction.................................................................................................1 Chapter 2 : Mechanism………………………………………………………………..5 2.1 Fluorescence………………………………………………………………….5 2.2 Franck-Condon Principle…………………………………………………….8 2.3 Laser………………………………………………………………………...11 Chapter 3 : Principles of Experiment Apparatus……………………………………..16 3.1 Ambient Pressure Photoemission Spectroscopy (APS)…………………….16 3.2 Cathodeluminescence(SEM-CL)…………………………………………...17 3.3 Photoluminescence(PL)……………………………………………………18 3.4 Raman Spectroscopy(RAMAN)……………………………………………19 Chapter 4 : Experiment Methods…………………………………………………….22 4.1 Fabrication of sample……………………………………………………….22 4.1.1 Substrates Cleaning………………………………………………….22 4.1.2 Drop Casting………………………………………………………...22 4.1.3 Spin Coating…………………………………………………………23 4.2 Distributed Bragg Reflector Optical Feedback……………………………..23 4.3 Scatter Medium Optical Feedback………………………………………….25 Chapter 5 : Results and Discussions…………………………………………………27 5.1 Characterizations of Nitrogen-Vacancy diamonds………………………….27 5.1.1 APS Characterization………………………………………………..27 5.1.2 CL Characterization…………………………………………………30 5.1.3 PL Characterization………………………………………………….34 5.1.4 RAMAN Characterization…………………………………………...37 5.2 Power dependence of Nitrogen-Vacancy laser……………………………...38 5.2.1 Cavity Laser…………………………………………………………38 5.2.2 Random Laser……………………………………………………….43 5.2.3 Threshold Value FWHM………………………………………….48 Chapter 6 : Conclusion……………………………………………………………….54 Chapter 7 : Future Work……………………………………………………………...55 7.1 Indirect Excitation of Microwave Controlling NV Laser…………………..55 7.1.1 Dye Experiment……………………………………………………..56 7.1.2 Quantum Dots Experiment………………………………………….58 7.2 Threshold Decreasing ……………………………………………………...59 Reference…………………………………………………………………………….68 | |
| dc.language.iso | en | |
| dc.subject | 鑽石 | zh_TW |
| dc.subject | 寬頻雷射 | zh_TW |
| dc.subject | broadband laser | en |
| dc.subject | diamond | en |
| dc.subject | NV center | en |
| dc.subject | broadband laser | en |
| dc.subject | diamond | en |
| dc.subject | NV center | en |
| dc.title | 利用氮摻雜鑽石製造寬頻雷射 | zh_TW |
| dc.title | Broadband Lasing from Extended Defects in Diamonds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝雅萍(Ya-Ping Hsieh),陳永芳(Yang-Fang Chen),張顏暉(Yuan-Huei Chang) | |
| dc.subject.keyword | 鑽石,寬頻雷射, | zh_TW |
| dc.subject.keyword | diamond,NV center,broadband laser, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202003979 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202015090900.pdf 未授權公開取用 | 18.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
