Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔
dc.contributor.authorYi-Jung Tsengen
dc.contributor.author曾奕融zh_TW
dc.date.accessioned2021-06-17T03:13:11Z-
dc.date.available2023-07-19
dc.date.copyright2018-07-19
dc.date.issued2018
dc.date.submitted2018-07-12
dc.identifier.citation[1] National Police Agency, Ministry of the Interior.Website: https://www.npa.gov.tw/NPAGip/wSite/ct?xItem=83247&ctNode=12594&mp=1
[2] Y.-S. Long, C.-L. Lee, H.-C. Ma, C. C. Liang, X. L. Chen, and M.-J. Kao, Breath-Alcohol Measurement Traceability and Quality Assurance Certification in Application of Forensic Science. National Taiwan Police College Bulletin, vol. 5, pp. 161-178, 2012.
[3] Scientific American. Available: http://sa.ylib.com/MagCont.aspx?Unit=columns&id=385
[4] B. B. Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Materials Chemistry and Physics, vol. 64, no. 1, pp. 62-65, 2000.
[5] A. Fujimoto and R. Nakade, Optimum Condition for Identification of Alcoholic Gases by Transient Response of Semiconductor Gas Sensor, Procedia Engineering, vol. 87, pp. 1055-1058, 2014.
[6] A. Antczak, Markers of oxidative stress in exhaled breath condensate, NATO Science Series, Series, vol. 1, pp. 333-337, 2002.
[7] M. Schweigkofler and R. Niessner, Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis, Environmental science & technology, vol. 33, no. 20, pp. 3680-3685, 1999.
[8] M. Phillips et al., Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study, The Lancet, vol. 353, no. 9168, pp. 1930-1933, 1999.
[9] M. Phillips et al., Detection of Lung Cancer With Volatile Markers in the Breatha, Chest, vol. 123, no. 6, pp. 2115-2123, 2003.
[10] W. Bertsch, Two‐Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications–Part 1: Fundamentals, Conventional Two‐Dimensional Gas Chromatography, Selected Applications, Journal of Separation Science, vol. 22, no. 12, pp. 647-665, 1999.
[11] J. Hodgkinson and R. P. Tatam, Optical gas sensing: a review, Measurement Science and Technology, vol. 24, no. 1, p. 012004, 2012.
[12] H. M. Padhy and P. Mishra, Detection of Liquefied and Gaseous form of CO2 Implementing New Method in Non-Dispersive Infrared Spectroscopy Sensor System, Global Journal of Science Frontier Research, vol. 12, 2012.
[13] S. Chen, T. Yamaguchi, and K. Watanabe, 'A simple, low-cost non-dispersive infrared CO/sub 2/monitor,' in Sensors for Industry Conference, 2002. 2nd ISA/IEEE, 2002, pp. 107-110: IEEE.
[14] Y. Wang, M. Nakayama, M. Yagi, M. Nishikawa, M. Fukunaga, and K. Watanabe, The NDIR CO/sub 2/monitor with smart interface for global networking, IEEE Transactions on instrumentation and measurement, vol. 54, no. 4, pp. 1634-1639, 2005.
[15] K. Yoo et al., Fabrication, characterization and application of a microelectromechanical system (MEMS) thermopile for non-dispersive infrared gas sensors, Measurement Science and Technology, vol. 22, no. 11, p. 115206, 2011.
[16] C. Calaza et al., Assessment of the final metrological characteristics of a MOEMS-based NDIR spectrometer through system modeling and data processing, IEEE sensors journal, vol. 3, no. 5, pp. 587-594, 2003.
[17] F. Cheng, X. Yang, and J. Gao, Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers, Optics letters, vol. 39, no. 11, pp. 3185-3188, 2014.
[18] T. Sawada, K. Masuno, S. Kumagai, M. Ishii, S. Uematsu, and M. Sasaki, 'Enhanced wavelength selective infrared emission using surface plasmon polariton and thermal energy confined in micro-heater,' in Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on, 2014, pp. 1179-1182: IEEE.
[19] H.-J. Zhao, Y.-Y. Tian, and J.-H. Lei, 'Gas sensors for refractive index detection using surface plasmon resonance on nanosystem,' in International Symposium on Photonics and Optoelectronics 2014, 2014, vol. 9233, p. 92332B: International Society for Optics and Photonics.
[20] T. D. Dao et al., Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers, Acs Photonics, vol. 2, no. 7, pp. 964-970, 2015.
[21] H. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, Dual-band infrared metasurface thermal emitter for CO2 sensing, Applied Physics Letters, vol. 105, no. 12, p. 121107, 2014.
[22] K. Chen, R. Adato, and H. Altug, Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy, Acs Nano, vol. 6, no. 9, pp. 7998-8006, 2012.
[23] A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing, ACS Photonics, vol. 2, no. 8, pp. 1167-1174, 2015.
[24] R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array, Optics express, vol. 22, no. 102, pp. A335-A343, 2014.
[25] M. P. McNeal et al., 'Development of optical MEMS CO 2 sensors,' in Atmospheric Radiation Measurements and Applications in Climate, 2002, vol. 4815, pp. 30-36: International Society for Optics and Photonics.
[26] Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection, Applied optics, vol. 43, no. 11, pp. 2257-2266, 2004.
[27] I. Doroshenko, V. Pogorelov, and V. Sablinskas, Infrared absorption spectra of monohydric alcohols, Dataset Papers in Science, vol. 2013, 2013.
[28] E. K. Plyler, Infrared Spectra of Methanol, Ethanol, and rz-Propanol, Journal of Research of the National Bureau of Standards, vol. 48, no. 4, 1952.
[29] National Institute of Standards and Technology Chemistry WebBook. Available: http://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Type=IR-SPEC&Index=1%23IR-SPEC
[30] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Quantum cascade laser, Science, vol. 264, no. 5158, pp. 553-556, 1994.
[31] J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Short wavelength (λ∼ 3.4 μ m) quantum cascade laser based on strained compensated InGaAs/AlInAs, Applied Physics Letters, vol. 72, no. 6, pp. 680-682, 1998.
[32] C. Faugeras et al., High-power room temperature emission quantum cascade lasers at/spl lambda/= 9/spl mu/m, IEEE journal of quantum electronics, vol. 41, no. 12, pp. 1430-1438, 2005.
[33] M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO 2, Applied Physics Letters, vol. 98, no. 12, p. 121116, 2011.
[34] G. Lévêque and O. J. Martin, Tunable composite nanoparticle for plasmonics, Optics letters, vol. 31, no. 18, pp. 2750-2752, 2006.
[35] M. Pralle et al., Photonic crystal enhanced narrow-band infrared emitters, Applied Physics Letters, vol. 81, no. 25, pp. 4685-4687, 2002.
[36] F. Li, H. San, M. Cheng, and X. Chen, 'Micro-machined infrared emitter with metallic photonic crystals structure,' in 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro-and Nano-Optical Devices and Systems, 2009, vol. 7284, p. 728406: International Society for Optics and Photonics.
[37] S.-Y. Lin, J. Moreno, and J. Fleming, Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation, Applied Physics Letters, vol. 83, no. 2, pp. 380-382, 2003.
[38] S. Lin, J. Fleming, and I. El-Kady, Highly efficient light emission at λ= 1.5 μm by a three-dimensional tungsten photonic crystal, Optics letters, vol. 28, no. 18, pp. 1683-1685, 2003.
[39] Q. Chen and D. R. Cumming, High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films, Optics express, vol. 18, no. 13, pp. 14056-14062, 2010.
[40] J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors, Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 3-15, 1999.
[41] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, nature, vol. 424, no. 6950, p. 824, 2003.
[42] M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, High performance midinfrared narrow-band plasmonic thermal emitter, Applied physics letters, vol. 89, no. 17, p. 173116, 2006.
[43] C.-Y. Chen, M.-W. Tsai, Y.-W. Jiang, Y.-H. Ye, Y.-T. Chang, and S.-C. Lee, Coupling of surface plasmons between two silver films in a plasmonic thermal emitter, Applied Physics Letters, vol. 91, no. 24, p. 243111, 2007.
[44] H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons, Journal of Applied Physics, vol. 105, no. 3, p. 033505, 2009.
[45] J. A. Schuller, T. Taubner, and M. L. Brongersma, Optical antenna thermal emitters, Nature Photonics, vol. 3, no. 11, p. 658, 2009.
[46] S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, Plasmonic thermal IR emitters based on nanoamorphous carbon, Applied physics letters, vol. 94, no. 7, p. 071113, 2009.
[47] P.-E. Chang et al., Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances, Applied Physics Letters, vol. 98, no. 7, p. 073111, 2011.
[48] C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays, Optics express, vol. 20, no. 9, pp. 10376-10381, 2012.
[49] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, High performance optical absorber based on a plasmonic metamaterial, Applied Physics Letters, vol. 96, no. 25, p. 251104, 2010.
[50] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Infrared perfect absorber and its application as plasmonic sensor, Nano letters, vol. 10, no. 7, pp. 2342-2348, 2010.
[51] I. Puscasu and W. L. Schaich, Narrow-band, tunable infrared emission from arrays of microstrip patches, Applied Physics Letters, vol. 92, no. 23, p. 233102, 2008.
[52] Y. Todorov et al., Optical properties of metal-dielectric-metal microcavities in the THz frequency range, Optics express, vol. 18, no. 13, pp. 13886-13907, 2010.
[53] Y.-H. Ye et al., Coupling of surface plasmons between two silver films in a Ag/SiO 2/Ag plasmonic thermal emitter with grating structure, Applied Physics Letters, vol. 93, no. 26, p. 263106, 2008.
[54] S. Collin, F. Pardo, and J.-L. Pelouard, Waveguiding in nanoscale metallic apertures, Optics Express, vol. 15, no. 7, pp. 4310-4320, 2007.
[55] Y.-W. Jiang et al., Characteristics of a waveguide mode in a trilayer Ag/SiO 2/Au plasmonic thermal emitter, Optics letters, vol. 34, no. 20, pp. 3089-3091, 2009.
[56] B. Lee and Z. Zhang, Design and fabrication of planar multilayer structures with coherent thermal emission characteristics, Journal of Applied Physics, vol. 100, no. 6, p. 063529, 2006.
[57] Y.-T. Wu et al., Narrow bandwidth midinfrared waveguide thermal emitters, IEEE Photonics Technology Letters, vol. 22, no. 15, pp. 1159-1161, 2010.
[58] D. Smith, E. Shiles, M. Inokuti, and E. Palik, Handbook of optical constants of solids, Handbook of Optical Constants of Solids, vol. 1, pp. 369-406, 1985.
[59] H.-H. Chen et al., Narrow bandwidth and highly polarized ratio infrared thermal emitter, Applied Physics Letters, vol. 97, no. 16, p. 163112, 2010.
[60] H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, Double wavelength infrared emission by localized surface plasmonic thermal emitter, Applied Physics Letters, vol. 104, no. 8, p. 083114, 2014.
[61] H.-H. Chen, Y.-T. Chang, S.-Y. Huang, F.-T. Chuang, C.-W. Yu, and S.-C. Lee, Two infrared emission modes with different wavelengths and orthogonal polarization in a waveguide thermal emitter, Journal of Applied Physics, vol. 112, no. 7, p. 074325, 2012.
[62] B. Cole, R. Higashi, and R. Wood, Monolithic two-dimensional arrays of micromachined microstructures for infrared applications, Proceedings of the IEEE, vol. 86, no. 8, pp. 1679-1686, 1998.
[63] T. Maier and H. Brückl, Wavelength-tunable microbolometers with metamaterial absorbers, Optics letters, vol. 34, no. 19, pp. 3012-3014, 2009.
[64] F. Niklaus, C. Vieider, and H. Jakobsen, 'MEMS-based uncooled infrared bolometer arrays: a review,' in MEMS/MOEMS technologies and applications III, 2008, vol. 6836, p. 68360D: International Society for Optics and Photonics.
[65] S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, Wavelength selective uncooled infrared sensor by plasmonics, Applied Physics Letters, vol. 100, no. 2, p. 021111, 2012.
[66] S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber, Optical Engineering, vol. 52, no. 12, p. 127104, 2013.
[67] R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys, Physica status solidi (c), vol. 7, no. 3‐4, pp. 1180-1183, 2010.
[68] V. Malyarov, I. A. Khrebtov, Y. V. Kulikov, I. I. Shaganov, V. Y. Zerov, and N. A. Feoktistov, 'Comparative investigations of the bolometric properties of thin film structures based on vanadium dioxide and amorphous hydrated silicon,' in International Conference on Photoelectronics and Night Vision Devices, 1999, vol. 3819, pp. 136-143: International Society for Optics and Photonics.
[69] H.-H. Chen et al., A plasmonic infrared photodetector with narrow bandwidth absorption, Applied Physics Letters, vol. 105, no. 2, p. 023109, 2014.
[70] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, vol. 424, p. 824, 08/14/online 2003.
[71] NIST Chemistry WebBook, SRD 69. Available: https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Type=IR-SPEC&Index=2
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69335-
dc.description.abstract在此論文中,整合了本實驗室在紅外光元件製程上既有的研究成果,包括針對酒精氣體的三波長窄頻紅外線發射器,以及相對應波長的窄頻偵測器,實現多波段的酒精氣體偵測系統。發射器部分採用金屬柵欄嵌入波導型紅外線發射器的結構,並且在上層堆疊 金/二氧化鈦/金 三層島狀結構以產生侷域型的表面電漿子模態的發射。偵測器部分採用 金/氫化非晶矽/金 的結構,藉由探討氫化非晶矽厚度以及上層金屬柵欄線寬,與波長紅位移的關係來微調所要的偵測波段以及製作不同的窄頻紅外線偵測器。我們設計一個非色散式紅外線分析系統來量測不同酒精氣體濃度,並且嘗試將此系統微型化,與電訊號分析系統整合成一個手持式氣體偵測裝置,包含發射器腔體、氣體腔體、偵測器的載具、上述的窄頻紅外線發射器與偵測器、訊號放大器、類比數位轉換器以及顯示器模組。zh_TW
dc.description.abstractThe thesis investigated the integrated infrared device process, including triple-wavelength infrared thermal emitter and the corresponding plasmonic infrared photodetector developed in our laboratory to realize a multi-band alcohol detection system.
The emitter adopt the structure of waveduide mode emitter embedded with golden grating in the dielectric layer and adding the Au / TiO2 / Au island structure on the top to produce the emission of localized surface plasmon resonance. The detector is Au/a-Si:H /Au grating structure which can be investigated by observing the wavelength red-shift wih the change of dielectric thickness and metallic linewidth.
These devices are applied in non-dispersive infrared (NDIR) system for alcohol detection. In addition, we have tried to miniaturize this system and integrate it with the electric signal system to make a portable apparatus, including the emitter, photodetector, emitter chamber, gas chamber, detector holder, signal amplifier, ADC and display module.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:13:11Z (GMT). No. of bitstreams: 1
ntu-107-R05941002-1.pdf: 4830403 bytes, checksum: 7aae6e79b6c79a6a0dab69f3d08face3 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES IX
Chapter 1 1
Introduction 1
Chapter 2 12
Fundamentals of Surface Plasmons and the Fabrication Processes 12
2.1 The fundamentals of surface plasmons 12
2.2 Process Flow 24
2.3 Measuring Systems 30
Chapter 3 33
Triple-Wavelength Thermal Emitter and the corresponding Plasmonic Infrared Photodetectors for alcohol 33
3.1 Triple-Wavelength Narrow Bandwidth Infrared Thermal Emitter for Alcohol 35
3.2 Plasmonic Infrared Photodetector with Narrow Absorption Bandwidth for Alcohol 42
3.3 Summary 54
Chapter 4 55
Alcohol Detection System 55
4.1 Design of the Alcohol Detection System 56
4.2 Experiments 64
4.3 Results and Discussion 66
4.4 Summary 78
Chapter 5 79
Conclusion 79
Bibliography 80
dc.language.isoen
dc.subject紅外線光偵測器zh_TW
dc.subject表面電漿子zh_TW
dc.subject酒精偵測zh_TW
dc.subject紅外線發光元件zh_TW
dc.subjectinfrared thermal emitteren
dc.subjectinfrared photodetectoren
dc.subjectsurface plasmonen
dc.subjectthe alcohol detectionen
dc.title多波段紅外線酒精偵測系統zh_TW
dc.titleMulti-wavelength Infrared Alcohol Detection Systemen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林清富,林致廷,蔡熊光
dc.subject.keyword表面電漿子,酒精偵測,紅外線發光元件,紅外線光偵測器,zh_TW
dc.subject.keywordsurface plasmon,the alcohol detection,infrared thermal emitter,infrared photodetector,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201801491
dc.rights.note有償授權
dc.date.accepted2018-07-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved