Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69328
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余化龍(Hwa-Lung Yu)
dc.contributor.authorMeng-Chieh Tsaien
dc.contributor.author蔡孟傑zh_TW
dc.date.accessioned2021-06-17T03:13:01Z-
dc.date.available2021-08-31
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-20
dc.identifier.citation[1] 行政院. (2019). 前瞻基礎建設計畫—水環境建設.
[2] 經濟部水利署水利規劃試驗所. (2018). 多元水源智慧調控-1.水資源資料盤查及數據整合.
[3] Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N., Gutzler, D., Zhang, X. (2013). Detection and Attribution of Climate Change: from Global to Regional. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 867–952). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
[4] 經濟部. (2016). 氣候變遷進行式,氣候變遷水環境知識庫。.
[5] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Paper presented at the Proceedings of the 8th Conference on Applied Climatology.
[6] Shukla, S., Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical research letters, 35(2).
[7] 蘇文瑞. (2000). 水資源供需指標建立之研究. (博士), 國立中央大學, 桃園縣.
[8] 袁倫欽. (2005). 水庫供水操作與乾旱預警系統之研究. (博士), 國立臺灣海洋大學, 基隆市.
[9] 周家慶. (2008). 水庫乾旱風險預警及水庫操作決策支援系統之建置研究. (博士), 國立臺灣海洋大學, 基隆市.
[10] 國家災害防救科技中心. (2015). 乾旱監測與預警系統建置.
[11] 陳柏蒼、周乃昉. (2015). 臺灣水資源乾旱預警系統建置之研究. 農業工程學報.
[12] 何智超. (2018). 竹桃北地區穩定供水與減災總合策略研究與成效評估-子計畫:新型態乾旱預警技術與應變決策系統研究(I).
[13] 游保杉,經濟部水利署水利規劃試驗所,財團法人成大研究發展基金會. (2019). 科學化流量預報與旱災決策輔助研發.
[14] Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial intelligence, 29(3), 241-288.
[15] Moral, S., Rumí, R., Salmerón, A. (2001). Mixtures of truncated exponentials in hybrid Bayesian networks. Paper presented at the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty.
[16] Shenoy, P. P., West, J. C. (2011). Inference in hybrid Bayesian networks using mixtures of polynomials. International Journal of Approximate Reasoning, 52(5), 641-657.
[17] Cozman, F. G. (2000). Credal networks. Artificial intelligence, 120(2), 199-233.
[18] Batchelor, C., Cain, J. (1999). Application of belief networks to water management studies. Agricultural Water Management, 40(1), 51-57.
[19] Borsuk, M. E., Stow, C. A., Reckhow, K. H. (2004). A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 173(2-3), 219-239.
[20] Bromley, J., Jackson, N. A., Clymer, O., Giacomello, A. M., Jensen, F. V. (2005). The use of Hugin® to develop Bayesian networks as an aid to integrated water resource planning. Environmental Modelling Software, 20(2), 231-242.
[21] Castelletti, A., Soncini-Sessa, R. (2007). Bayesian Networks and participatory modelling in water resource management. Environmental Modelling Software, 22(8), 1075-1088.
[22] Henriksen, H. J., Barlebo, H. C. (2008). Reflections on the use of Bayesian belief networks for adaptive management. Journal of Environmental Management, 88(4), 1025-1036.
[23] Molina, J., Bromley, J., García-Aróstegui, J. L., Sullivan, C., Benavente, J. (2010). Integrated water resources management of overexploited hydrogeological systems using Object-Oriented Bayesian Networks. Environmental Modelling Software, 25(4), 383-397.
[24] Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A. (2011). Bayesian networks in environmental modelling. Environmental Modelling Software, 26(12), 1376-1388.
[25] Barton, D. N., Kuikka, S., Varis, O., Uusitalo, L., Henriksen, H. J., Borsuk, M., Linnell, J. D. (2012). Bayesian networks in environmental and resource management. Integrated environmental assessment and management, 8(3), 418-429.
[26] Phan, T. D., Smart, J. C., Capon, S. J., Hadwen, W. L., Sahin, O. (2016). Applications of Bayesian belief networks in water resource management: a systematic review. Environmental Modelling Software, 85, 98-111.
[27] Davis, D. R., Kisiel, C. C., Duckstein, L. (1972). Bayesian decision theory applied to design in hydrology. Water Resources Research, 8(1), 33-41.
[28] Grosser, P. W., Goodman, A. S. (1985). Determination of groundwater sampling frequencies through Bayesian decision theory. Civil Engineering Systems, 2(4), 186-194.
[29] Freeze, R. A., Massmann, J., Smith, L., Sperling, T., James, B. (1990). Hydrogeological decision analysis: 1. A framework. Groundwater, 28(5), 738-766.
[30] Marin, C. M., Medina Jr, M. A., Butcher, J. B. (1989). Monte Carlo analysis and Bayesian decision theory for assessing the effects of waste sites on groundwater, I: Theory. Journal of contaminant hydrology, 5(1), 1-13.
[31] Wijedasa, H. A., Kemblowski, M. W. (1993). Bayesian decision analysis for plume interception wells. Groundwater, 31(6), 948-952.
[32] McPhee, J., Yeh, W. W. G. (2006). Experimental design for groundwater modeling and management. Water Resources Research, 42(2).
[33] Feyen, L., Gorelick, S. M. (2005). Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. Water Resources Research, 41(3).
[34] Molina, J.-L., Pulido-Velázquez, M., Llopis-Albert, C., Peña-Haro, S. (2013). Stochastic hydro-economic model for groundwater quality management using Bayesian networks. Water science and technology, 67(3), 579-586.
[35] Varouchakis, E., Palogos, I., Karatzas, G. (2016). Application of Bayesian and cost benefit risk analysis in water resources management. Journal of Hydrology, 534, 390-396.
[36] 經濟部水利署北區水資源局. (2015). 104年北部地區抗旱應變報告.
[37] Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle Selected papers of hirotugu akaike (pp. 199-213): Springer.
[38] Watanabe, S., Opper, M. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of machine learning research, 11(12).
[39] 余化龍、何文照等人. (2019). 風險分析基礎篇.
[40] Gilks, W. R., Best, N. G., Tan, K. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 44(4), 455-472.
[41] Hoffman, M. D., Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1), 1593-1623.
[42] Gelman, A., Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457-472.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69328-
dc.description.abstract長期降雨預報之高度不確定性使得水資源管理面臨挑戰,尤其於乾旱期間,決策者需要預見水資源需求和供應之間的潛在差異,以降低缺水風險,但其存在著不確定性且隨眾多因素而變化。面對此不確定性,須有別於傳統風險評估之抗旱決策輔助系統,應改以機率風險評估(PRA, Probabilistic Risk Assessment)概念建之,以序率方式推估未來情境之缺水風險,並在此風險下,提供可能之抗旱決策,進而提前部署。
本研究將嘗試建立水情抗旱決策輔助之動態貝氏網絡(DBN, Dynamic Bayesian network)機率模型,以旬尺度條件機率的方式連結石門水庫集水區降雨量、長期天氣預報、流量預報、河川流量、入庫流量、水庫蓄水量、供水系統、各區域計畫需水量、水庫操作、抗旱措施等,接著使用馬可夫鏈蒙地卡羅(MCMC, Markov Chain Monte Carlo)抽樣法,推估各節點之後驗機率,進而判斷缺水之可能性及不確定性,最後進行貝氏成本效益之風險分析,以提供抗旱決策之可行方案。
本研究之動態貝氏網路推估發現,針對農業供水部份,不採納第三階段限水、停灌,仍可滿足經濟部水利署之抗旱目標,並保留兩個月安全水量進行管控。2015年31旬後採取10旬二階限水、4旬一階限水,可取代7旬三階限水;2017年31旬後採取9旬二階限水、2旬一階限水,可取代14旬三階限水。動態貝氏網路於供水系統,其可依推估之各節點機率密度分佈,進行最佳抗旱決策分析,有機會可以作為抗旱應變決策輔助系統(DSS, Decision Support Systems)之工具。
zh_TW
dc.description.abstractThe high uncertainty of long-term precipitation forecasting introduces a significant challenge in water resources management, especially during the drought period. During the dry season, the decision makers need to foresee the potential discrepancy between the demand and supply of the water resources, which are both uncertain and changing in according to multiple conditions, in order to avoid the potential water shortage risk.
This study proposes the water resources management framework against drought based upon Bayesian network model. This model with conditional probability to link rainfall, stream flow, reservoir inflow, reservoir level, water supply system, water planning demand from sectors, operation rules and policies against drought. Then, using Markov chain Monte Carlo (MCMC) sampling to approach posterior probability of each node and analyzing probability and intrinsic uncertainty of water shortage node. Finally, taking Bayesian and cost benefit risk analysis to provide feasible drought decision making.
The dynamic Bayesian network (DBN) estimation of this research found that for agricultural water use, the third-stage water restriction and fallow is not executed, which can still meet the target of drought policies of the Water Resources Department of the Ministry of Economic Affairs, and retain two months of safe water volume for control. In 2015, the third-order water restriction can be replaced by the second-order water restriction in ten times and the first-order water restriction in four times can replace In 2017, the third-order water restriction can be replaced by the second-order water restriction in nine times and the first-order water restriction in two times. It is a potential tool to decision support systems (DSS) for drought.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:13:01Z (GMT). No. of bitstreams: 1
U0001-1808202015090800.pdf: 19169065 bytes, checksum: 8999641c3a8e7b3554658429df3622b6 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VIII
表目錄 X
第一章、緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 研究流程 4
第二章、文獻回顧 6
2.1 乾旱預警 6
2.2 貝氏網路 7
2.3 貝氏風險-成本效益分析 9
第三章、研究區域介紹 11
3.1 石門集水區 11
3.1.1氣象站特性 12
3.1.2 水文站特性 13
3.2 供水系統 13
3.2.1 石門水庫 13
3.2.2運轉規線 15
3.2.3計畫供水量與實際供水量 16
3.3 抗旱應變 17
3.4 農業缺水率 19
第四章、研究方法 20
4.1 機率圖模型 20
4.2 貝氏網路 21
4.3 參數學習 22
4.3.1 標準乾旱指標 23
4.3.2 訊息準則 26
4.4 後驗機率推估 26
4.4.1 推估技術 27
4.4.2 收斂判斷 28
4.4.3 效率判斷 28
4.5 貝氏風險-成本效益分析 29
4.5.1限制式 29
4.5.2多目標式 29
第五章、缺水風險評估之動態貝氏網路 30
5.1歷史資料 30
5.2 網路架構 31
5.3 參數學習 42
5.3.1 標準化乾旱指標 43
5.3.2農業供水量 50
5.3.3公共供水量 51
5.4模型推估與驗證 52
5.4.1 標準化乾旱指標 52
5.4.2 水庫有效蓄容量 53
5.4.3 農業與公共供水量 54
5.4.4 農業與公共缺水率 55
5.5 最佳決策 56
第六章、結論與建議 57
6.1 結論 57
6.2 建議 57
第七章、參考文獻 59
dc.language.isozh-TW
dc.subject抗旱決策輔助zh_TW
dc.subject動態貝氏網路zh_TW
dc.subject馬可夫鏈蒙地卡羅法zh_TW
dc.subject乾旱zh_TW
dc.subjectdecision support systemsen
dc.subjectdroughten
dc.subjectdynamic Bayesian networken
dc.subjectMarkov chain Monte Carloen
dc.title動態貝氏網路於缺水風險評估之探討zh_TW
dc.titleApplying Dynamic Bayesian Network for Water Shortage Risk Assessmenten
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡明哲(Ming-Che Hu),黃文政(Wen-Cheng Huang)
dc.subject.keyword動態貝氏網路,馬可夫鏈蒙地卡羅法,抗旱決策輔助,乾旱,zh_TW
dc.subject.keyworddynamic Bayesian network,Markov chain Monte Carlo,decision support systems,drought,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202003979
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-1808202015090800.pdf
  未授權公開取用
18.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved