請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69314完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 康照洲 | |
| dc.contributor.author | Yi Lee | en |
| dc.contributor.author | 李儀 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:12:42Z | - |
| dc.date.available | 2023-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-13 | |
| dc.identifier.citation | Ajayi BO, Adedara IA, Farombi EO (2016) Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 95:42-51 doi:10.1016/j.fct.2016.06.019
Albert RE, Miller ML, Cody TE, Talaska G, Underwood P, Andringa A (1996) Epidermal cytokinetics, DNA adducts, and dermal inflammation in the mouse skin in response to repeated benzo[a]pyrene exposures. Toxicology and applied pharmacology 136(1):67-74 doi:10.1006/taap.1996.0007 Alexander WS, Hilton DJ (2004) The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annual review of immunology 22:503-29 doi:10.1146/annurev.immunol.22.091003.090312 Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environmental health perspectives 112(9):970-8 Babon JJ, Kershaw NJ, Murphy JM, et al. (2012) Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity. Immunity 36(2):239-50 doi:10.1016/j.immuni.2011.12.015 Babon JJ, Sabo JK, Zhang JG, Nicola NA, Norton RS (2009) The SOCS box encodes a hierarchy of affinities for Cullin5: implications for ubiquitin ligase formation and cytokine signalling suppression. Journal of molecular biology 387(1):162-74 Bai L, Yu Z, Qian G, et al. (2006) SOCS3 was induced by hypoxia and suppressed STAT3 phosphorylation in pulmonary arterial smooth muscle cells. Respiratory physiology & neurobiology 152(1):83-91 doi:10.1016/j.resp.2005.07.001 Beamer CA, Shepherd DM (2013) Role of the aryl hydrocarbon receptor (AhR) in lung inflammation. Seminars in immunopathology 35(6):693-704 doi:10.1007/s00281-013-0391-7 Becker S, Groner B, Muller CW (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394(6689):145-51 doi:10.1038/28101 Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Critical reviews in eukaryotic gene expression 18(3):207-50 Benson JM, Shepherd DM (2011) Dietary ligands of the aryl hydrocarbon receptor induce anti-inflammatory and immunoregulatory effects on murine dendritic cells. Toxicological sciences : an official journal of the Society of Toxicology 124(2):327-38 doi:10.1093/toxsci/kfr249 Boyle K, Egan P, Rakar S, et al. (2007) The SOCS box of suppressor of cytokine signaling-3 contributes to the control of G-CSF responsiveness in vivo. Blood 110(5):1466-74 doi:10.1182/blood-2007-03-079178 Brant F, Miranda AS, Esper L, et al. (2014) Role of the aryl hydrocarbon receptor in the immune response profile and development of pathology during Plasmodium berghei Anka infection. Infection and immunity 82(8):3127-40 doi:10.1128/iai.01733-14 Chen J, Wang W, Li Q (2017) Increased Th1/Th17 Responses Contribute to Low-Grade Inflammation in Age-Related Macular Degeneration. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 44(1):357-367 doi:10.1159/000484907 Dervisogullari MS, Totan Y, Tenlik A, Yuce A (2015) Effects of cigarette smoking on choroidal and retinal thickness and ocular pulse amplitude. Cutaneous and ocular toxicology 34(3):217-21 doi:10.3109/15569527.2014.950380 Detrick B, Rodrigues M, Chan CC, Tso MO, Hooks JJ (1986) Expression of HLA-DR antigen on retinal pigment epithelial cells in retinitis pigmentosa. American journal of ophthalmology 101(5):584-90 Di Meglio P, Duarte JH, Ahlfors H, et al. (2014) Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40(6):989-1001 doi:10.1016/j.immuni.2014.04.019 Ehlken C, Guichard MM, Schlunck G, Buhler AD, Martin G, Agostini HT (2017) Expression of Angiogenic and Inflammatory Factors in Choroidal Neovascularisation-Derived Retinal Pigment Epithelium. Ophthalmic research doi:10.1159/000481260 Ehlting C, Lai WS, Schaper F, et al. (2007) Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-alpha involves activation of the MKK6/p38MAPK/MK2 cascade. Journal of immunology (Baltimore, Md : 1950) 178(5):2813-26 Eling T, Curtis J, Battista J, Marnett LJ (1986) Oxidation of (+)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by mouse keratinocytes: evidence for peroxyl radical- and monoxygenase-dependent metabolism. Carcinogenesis 7(12):1957-63 Endo TA, Masuhara M, Yokouchi M, et al. (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387(6636):921-4 doi:10.1038/43213 Esser C, Rannug A, Stockinger B (2009) The aryl hydrocarbon receptor in immunity. Trends in immunology 30(9):447-54 doi:10.1016/j.it.2009.06.005 Fujii-Kuriyama Y, Kawajiri K (2010) Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. Proceedings of the Japan Academy Series B, Physical and biological sciences 86(1):40-53 Fujii-Kuriyama Y, Mimura J (2005) Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochemical and biophysical research communications 338(1):311-7 doi:10.1016/j.bbrc.2005.08.162 Fujisawa-Sehara A, Sogawa K, Yamane M, Fujii-Kuriyama Y (1987) Characterization of xenobiotic responsive elements upstream from the drug-metabolizing cytochrome P-450c gene: a similarity to glucocorticoid regulatory elements. Nucleic acids research 15(10):4179-91 Govindaraju VK, Bodas M, Vij N (2017) Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells. PloS one 12(8):e0182420 doi:10.1371/journal.pone.0182420 Greenlee WF, Poland A (1979) Nuclear uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Role of the hepatic cytosol receptor protein. The Journal of biological chemistry 254(19):9814-21 Hamel CP, Detrick B, Hooks JJ (1990) Evaluation of Ia expression in rat ocular tissues following inoculation with interferon-gamma. Exp Eye Res 50(2):173-82 Hu P, Herrmann R, Bednar A, et al. (2013) Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology. Proc Natl Acad Sci U S A 110(43):E4069-78 doi:10.1073/pnas.1307574110 Hu T, Pan Z, Yu Q, et al. (2016) Benzo(a)pyrene induces interleukin (IL)-6 production and reduces lipid synthesis in human SZ95 sebocytes via the aryl hydrocarbon receptor signaling pathway. Environ Toxicol Pharmacol 43:54-60 doi:10.1016/j.etap.2016.02.011 J. Latimer JZ (2003) The sources, transport, and fate of PAH in the marine environment. Ji K, Chen J, Hu J, et al. (2015) The protective effect of astragaloside IV against benzo[a]pyrene induced endothelial progenitor cell dysfunction. Life sciences 132:13-9 doi:10.1016/j.lfs.2015.04.002 Juricek L, Carcaud J, Pelhaitre A, et al. (2017) AhR-deficiency as a cause of demyelinating disease and inflammation. Scientific reports 7(1):9794 doi:10.1038/s41598-017-09621-3 Keeling E, Lotery AJ, Tumbarello DA, Ratnayaka JA (2018) Impaired Cargo Clearance in the Retinal Pigment Epithelium (RPE) Underlies Irreversible Blinding Diseases. Cells 7(2) doi:10.3390/cells7020016 Keino H, Horie S, Sugita S (2018) Immune Privilege and Eye-Derived T-Regulatory Cells. Journal of immunology research 2018:1679197 doi:10.1155/2018/1679197 Kim SY, Yang HJ, Chang YS, et al. (2014) Deletion of aryl hydrocarbon receptor AHR in mice leads to subretinal accumulation of microglia and RPE atrophy. Investigative ophthalmology & visual science 55(9):6031-40 doi:10.1167/iovs.14-15091 Kiu H, Hilton DJ, Nicola NA, et al. (2007) Mechanism of crosstalk inhibition of IL-6 signaling in response to LPS and TNFalpha. Growth factors (Chur, Switzerland) 25(5):319-28 doi:10.1080/08977190701830151 Kubo M, Hanada T, Yoshimura A (2003) Suppressors of cytokine signaling and immunity. Nature immunology 4(12):1169-76 doi:10.1038/ni1012 Li X, Cai Y, Wang YS, et al. (2012) Hyperglycaemia exacerbates choroidal neovascularisation in mice via the oxidative stress-induced activation of STAT3 signalling in RPE cells. PloS one 7(10):e47600 doi:10.1371/journal.pone.0047600 Li XD, Li XM, Gu JW, Sun XC (2017) MiR-155 regulates lymphoma cell proliferation and apoptosis through targeting SOCS3/JAK-STAT3 signaling pathway. European review for medical and pharmacological sciences 21(22):5153-5159 doi:10.26355/eurrev_201711_13832 Lodovici M, Akpan V, Evangelisti C, Dolara P (2004) Sidestream tobacco smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons. Journal of applied toxicology : JAT 24(4):277-81 doi:10.1002/jat.992 Martins M, Costa PM, Ferreira AM, Costa MH (2013) Comparative DNA damage and oxidative effects of carcinogenic and non-carcinogenic sediment-bound PAHs in the gills of a bivalve. Aquatic toxicology (Amsterdam, Netherlands) 142-143:85-95 doi:10.1016/j.aquatox.2013.07.019 Mastrangelo G, Fadda E, Marzia V (1996) Polycyclic aromatic hydrocarbons and cancer in man. Environmental health perspectives 104(11):1166-70 Matsunaga N, Tsuchimori N, Matsumoto T, Ii M (2011) TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Molecular pharmacology 79(1):34-41 doi:10.1124/mol.110.068064 McIntosh BE, Hogenesch JB, Bradfield CA (2010) Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annual review of physiology 72:625-45 doi:10.1146/annurev-physiol-021909-135922 Naka T, Narazaki M, Hirata M, et al. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387(6636):924-9 doi:10.1038/43219 Nelson EA, Walker SR, Kepich A, et al. (2008) Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 112(13):5095-102 doi:10.1182/blood-2007-12-129718 Nielsen T, Ramdahl T, Bjorseth A (1983) The fate of airborne polycyclic organic matter. Environmental health perspectives 47:103-14 Oike T, Sato Y, Kobayashi T, et al. (2017) Stat3 as a potential therapeutic target for rheumatoid arthritis. Scientific reports 7(1):10965 doi:10.1038/s41598-017-11233-w Ozawa Y, Nakao K, Kurihara T, et al. (2008) Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation. The Journal of biological chemistry 283(36):24561-70 doi:10.1074/jbc.M802238200 Patel AK, Syeda S, Hackam AS (2013) Signal transducer and activator of transcription 3 (STAT3) signaling in retinal pigment epithelium cells. JAKSTAT 2(4):e25434 doi:10.4161/jkst.25434 Percopo CM, Hooks JJ, Shinohara T, Caspi R, Detrick B (1990) Cytokine-mediated activation of a neuronal retinal resident cell provokes antigen presentation. Journal of immunology (Baltimore, Md : 1950) 145(12):4101-7 Peter Guengerich F, Chun YJ, Kim D, Gillam EM, Shimada T (2003) Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutation research 523-524:173-82 Peterson WM, Wang Q, Tzekova R, Wiegand SJ (2000) Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. The Journal of neuroscience : the official journal of the Society for Neuroscience 20(11):4081-90 Poland A, Glover E, Kende AS (1976) Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. The Journal of biological chemistry 251(16):4936-46 Pollenz RS, Buggy C (2006) Ligand-dependent and -independent degradation of the human aryl hydrocarbon receptor (hAHR) in cell culture models. Chemico-biological interactions 164(1-2):49-59 doi:10.1016/j.cbi.2006.08.014 Qamar W, Khan AQ, Khan R, et al. (2012) Benzo(a)pyrene-induced pulmonary inflammation, edema, surfactant dysfunction, and injuries in rats: alleviation by farnesol. Experimental lung research 38(1):19-27 doi:10.3109/01902148.2011.632064 Qin H, Roberts KL, Niyongere SA, Cong Y, Elson CO, Benveniste EN (2007) Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. Journal of immunology (Baltimore, Md : 1950) 179(9):5966-76 Reyes-Reyes EM, Ramos IN, Tavera-Garcia MA, Ramos KS (2016) The aryl hydrocarbon receptor agonist benzo(a)pyrene reactivates LINE-1 in HepG2 cells through canonical TGF-beta1 signaling: implications in hepatocellular carcinogenesis. American journal of cancer research 6(5):1066-77 Reynaud S, Deschaux P (2006) The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquatic toxicology (Amsterdam, Netherlands) 77(2):229-38 doi:10.1016/j.aquatox.2005.10.018 Rottenberg ME, Carow B (2014) SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Seminars in immunology 26(6):518-32 doi:10.1016/j.smim.2014.10.004 Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL (2002) Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 40(1):93-104 Rybicki BA, Nock NL, Savera AT, Tang D, Rundle A (2006) Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis. Cancer letters 239(2):157-67 doi:10.1016/j.canlet.2005.07.029 Savas U, Bhattacharyya KK, Christou M, Alexander DL, Jefcoate CR (1994) Mouse cytochrome P-450EF, representative of a new 1B subfamily of cytochrome P-450s. Cloning, sequence determination, and tissue expression. The Journal of biological chemistry 269(21):14905-11 Seifermann M, Epe B (2017) Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free radical biology & medicine 107:258-265 doi:10.1016/j.freeradbiomed.2016.11.018 Shi Q, Boots AW, Maas L, et al. (2017) Effect of interleukin (IL)-8 on benzo[a]pyrene metabolism and DNA damage in human lung epithelial cells. Toxicology 381:64-74 doi:10.1016/j.tox.2017.02.013 Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug metabolism and pharmacokinetics 21(4):257-76 Sobinoff AP, Pye V, Nixon B, Roman SD, McLaughlin EA (2012) Jumping the gun: smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress. Toxicology and applied pharmacology 260(1):70-80 doi:10.1016/j.taap.2012.01.028 Souza T, Jennen D, van Delft J, van Herwijnen M, Kyrtoupolos S, Kleinjans J (2016) New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Archives of toxicology 90(6):1449-58 doi:10.1007/s00204-015-1572-z Stevens EA, Mezrich JD, Bradfield CA (2009) The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 127(3):299-311 doi:10.1111/j.1365-2567.2009.03054.x Sun Y, Ju M, Lin Z, et al. (2015) SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal 8(395):ra94 doi:10.1126/scisignal.aaa8695 Sun Y, Lin Z, Liu CH, et al. (2017) Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. The Journal of experimental medicine 214(6):1753-1767 doi:10.1084/jem.20161645 Uno S, Dalton TP, Derkenne S, et al. (2004) Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Molecular pharmacology 65(5):1225-37 doi:10.1124/mol.65.5.1225 Veldhoen M, Duarte JH (2010) The aryl hydrocarbon receptor: fine-tuning the immune-response. Current opinion in immunology 22(6):747-52 doi:10.1016/j.coi.2010.09.001 Wada T, Sunaga H, Miyata K, Shirasaki H, Uchiyama Y, Shimba S (2016) Aryl Hydrocarbon Receptor Plays Protective Roles against High Fat Diet (HFD)-induced Hepatic Steatosis and the Subsequent Lipotoxicity via Direct Transcriptional Regulation of Socs3 Gene Expression. The Journal of biological chemistry 291(13):7004-16 doi:10.1074/jbc.M115.693655 White CA, Nicola NA (2013) SOCS3: An essential physiological inhibitor of signaling by interleukin-6 and G-CSF family cytokines. JAKSTAT 2(4):e25045 doi:10.4161/jkst.25045 Wu TC, Huang SY, Chan ST, Liao JW, Yeh SL (2015) Combination of beta-carotene and quercetin against benzo[a]pyrene-induced pro-inflammatory reaction accompanied by the regulation of antioxidant enzyme activity and NF-kappaB translocation in Mongolian gerbils. European journal of nutrition 54(3):397-406 doi:10.1007/s00394-014-0719-7 Yasukawa H, Misawa H, Sakamoto H, et al. (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. The EMBO journal 18(5):1309-20 doi:10.1093/emboj/18.5.1309 Yasukawa H, Nagata T, Oba T, Imaizumi T (2012) SOCS3: A novel therapeutic target for cardioprotection. Jakstat 1(4):234-40 doi:10.4161/jkst.22435 Yerramothu P, Vijay AK, Willcox MDP (2017) Inflammasomes, the eye and anti-inflammasome therapy. Eye (London, England) doi:10.1038/eye.2017.241 Yin Y, Liu W, Dai Y (2015) SOCS3 and its role in associated diseases. Hum Immunol 76(10):775-80 doi:10.1016/j.humimm.2015.09.037 Zhang C, Li H, Liu MG, et al. (2008) STAT3 activation protects retinal ganglion cell layer neurons in response to stress. Exp Eye Res 86(6):991-7 doi:10.1016/j.exer.2008.03.020 Zhang L, Shiverick KT (1997) Benzo(a)pyrene, but not 2,3,7,8-tetrachlorodibenzo-p-dioxin, alters cell proliferation and c-myc and growth factor expression in human placental choriocarcinoma JEG-3 cells. Biochemical and biophysical research communications 231(1):117-20 doi:10.1006/bbrc.1997.6053 Zhang SS, Wei J, Qin H, et al. (2004) STAT3-mediated signaling in the determination of rod photoreceptor cell fate in mouse retina. Investigative ophthalmology & visual science 45(7):2407-12 Zhang SY, Shao D, Liu H, et al. (2017) Metabolomics analysis reveals that benzo[a]pyrene, a component of PM2.5, promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro. Redox biology 13:459-469 doi:10.1016/j.redox.2017.07.001 Zhao B, Degroot DE, Hayashi A, He G, Denison MS (2010) CH223191 is a ligand-selective antagonist of the Ah (Dioxin) receptor. Toxicological sciences : an official journal of the Society of Toxicology 117(2):393-403 doi:10.1093/toxsci/kfq217 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69314 | - |
| dc.description.abstract | 近年來,許多研究發現PAHs可增加諸多眼部病變,流病資料統計亦發現抽菸與眼睛疾病發生有關。Benzo[a]pyrene (B[a]P)為多環芳香烴(Polycyclic Aromatic Hydrocarbons, PAHs)的其中之一員,由碳的不完全燃燒所產生,是一種廣泛存在環境的的致癌化學物質。B[a]P為Aryl Hydrocarbon Receptor (AhR) ligand,進入細胞後會和AhR蛋白結合進一步調控下游多項基因轉錄。過去研究顯示,B[a]P可能會透過AhR調控發炎反應,但具體機轉仍不清楚。Suppressor of cytokine signaling-3 (Socs3)作為一發炎調控因子,可藉由負回饋機轉抑制發炎反應,而發炎是導致視網膜病變的主要因素之一,因此本研究希望觀察眼部暴露B[a]P後之AhR路徑對Socs3的影響。我們利用ARPE-19人類視網膜色素上皮細胞株證實B[a]P暴露會透過活化AhR,近一步誘導Socs3表現;然而當AhR消失時,Socs3表現下降,但是隨B[a]P劑量暴露,依舊可以觀察到Socs3表現的誘導現象,伴隨Stat3的磷酸化增加。在炎症進展中,JAK / STAT途徑在信號轉導中起關鍵作用,後續實驗利用免疫熒光、免疫沈澱法以及Stat3磷酸化抑制劑證實在沒有AhR的情況下則會透過Stat3活化取代AhR增加Socs3表現。另外,過去文獻指出,B[a]P會導致發炎反應上升,然Socs3一般被認為扮演抑制發炎角色,所以接下來實驗想探討B[a]P對發炎的影響以及Socs3所扮演的角色。在以單一3µM B[a]P劑量24小時暴露後,測量發炎因子IL-6、TGF-beta1,並未發現以上發炎因子表現改變情況,相關B[a]P暴露對視網膜色素上皮細胞發炎的影響,仍待後續更全面劑量、暴露時間及不同cytokine的研究。 | zh_TW |
| dc.description.abstract | Recently, studies demonstrated that PAHs might increase a number of eye lesions. Statistics of epidemics suggested that smoking was a risk factor for oculardiseases. Benzo[a]pyrene (B[a]P), one of the polycyclic aromatic hydrocarbons (PAHs), a carcinogenic chemical substance that is widely present in the environment. It is produced by incomplete combustion of carbon. B[a]P is an aryl hydrocarbon receptor (AhR) ligand that binds to the AhR protein and further regulates downstream gene transcription. In addition, studies had also shown that B[a]P might affect the cellular inflammatory response through activation of the AhR pathway, but the relevant mechanisms remained unclear. Suppressor of cytokine signaling-3 (Socs3), an inflammatory regulator, act as an inhibitor of inflammation by negative feedback. Inflammation is one of the major causes of retinopathy. Therefore, this study aims to observe the effect of the AhR –regulated Socs3 pathway with B[a]P exposure. Here, we used ARPE-19 human retinal pigment epithelial cell line that B[a]P induced Socs3 expression through the activation of AhR. Knock out of AhR attenuated the B[a]P-dependent induction of Socs3 expression, accompanied with the increase of the phosphorylated Stat3. Subsequent experiments using immunofluorescence and Stat3 phosphorylation inhibitors demonstrated that in the absence of AhR, activation of Stat3 replaced AhR and increased the expression of Socs3. In addition, after exposure to 3 μM B[a]P for 24 hours, inflammatory cytokines IL-6 and TGF-beta1 were measured and no change in the protein expression was found. More studies should be done to further confirm the effect of B[a]P to ARPE-19 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:12:42Z (GMT). No. of bitstreams: 1 ntu-107-R05447002-1.pdf: 4651014 bytes, checksum: a8a9c1d3ea6f6e564c8cdb8899b54a4f (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 1
英文摘要 2 第一章 緒論 3 1.1多環芳香烴 (Polycyclic aromatic hydrocarbons, PAHs) 與苯芘 (benzo[a]pyrene, B[a]P)毒理背景介紹 4 1.2 多環芳香烴受體 (Aryl hydrocarbon receptor, AhR) 6 1.3 多環芳香烴受體 (Aryl hydrocarbon receptor, AhR) 與發炎 7 1.4 細胞激素信號抑制3 (Suppressor of cytokine signaling 3, Socs3) 與免疫發炎 8 1.5 發炎反應對視網膜色素上皮細胞之影響 11 1.6研究動機 13 第二章 材料與方法 15 2.1 實驗材料 16 2.1.1 細胞株 (Cell lines) 16 2.1.2 藥品與試劑 (Chemicals and Reagents) 16 2.1.3 抗體 (Antibodies) 18 2.1.4 質體 (Plasmids) 18 2.2 實驗方法 18 2.2.1細胞培養 (Cell culture) 18 2.2.2 細胞總蛋白質液收集 (Cell lysate collection) 19 2.2.3 西方墨點法 (Western blot analysis) 20 2.2.4 免疫沉澱法 (Immunoprecipitation) 20 2.2.5質體萃取 (Plasmid DNA purification) 21 2.2.6質體轉染 (Plasmid transfection) 21 2.2.7 SIE冷光酵素分析法 (SIE luciferase assay) 22 2.2.8免疫螢光染色 (immunofluorescence staining) 22 2.2.9 反轉錄聚合酵素連鎖反應 (Reverse Transcription Polymerase Chain Reaction,RT-PCR) 23 2.2.10酵素連結免疫吸附法 (Enzyme-linked immunosorbent assay, ELISA) 24 2.2. 11統計分析 (Statistic analysis) 25 第三章 實驗結果 26 3.1 B[a]P會降低ARPE-19細胞中AhR蛋白表現 27 3.2 B[a]P會增加ARPE-19細胞中Socs3 mRNA以及蛋白表現 27 3.3 CH223191可以透過抑制AhR降低B[a]P所誘導的Socs3表現 28 3.4 B[a]P所誘導的Socs3表現在AhR-/- ARPE-19細胞株減弱,但仍存在 28 3.5 B[a]P暴露會活化AhR-/- ARPE-19的Stat3路徑 29 3.6 Nifuroxazide在AhR-/- ARPE-19細胞株可以透過抑制Stat3磷酸化降低B[a]P所誘導的Socs3表現 30 3.7 B[a]P在細胞缺乏AhR時會增加p-Stat3的入荷情況 31 3.8.B[a]P暴露上調AhR-/- ARPE-19細胞株SIE轉錄活性 31 3.9. AhR-/- ARPE-19細胞Socs3和Stat3交互作用相較AhR+/+細胞明顯增加 32 3.10. AhR+/+/ AhR - / - / si-Socs3 ARPE-19細胞在B [a] P處理下的IL-6蛋白變化 33 3.11. AhR+/+/ AhR - / - / si-Socs3 ARPE-19細胞在B[a]P處理下的TGF-beta表現 34 第四章 討論 35 4.1 B[a]P對發炎因子的影響 36 4.2 AhR和Socs3之關聯性 38 4.3 Socs3表現量上升與其生理意義之探討 39 4.4 AhR和Stat3的關聯性之探討 40 4.5 Stat3活化在RPE中的功能及與視網膜疾病之可能關聯 41 第五章 結論 43 參考文獻 45 圖表集 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 苯芘 | zh_TW |
| dc.subject | 眼睛 | zh_TW |
| dc.subject | 視網膜病變 | zh_TW |
| dc.subject | retinopathy | en |
| dc.subject | B[a]P | en |
| dc.subject | ocular | en |
| dc.title | 苯芘對視網膜色素上皮細胞AhR / Stat3路徑所調控之Socs3角色探討 | zh_TW |
| dc.title | Studies On The Molecular Mechanism Of The
Benzo [a] pyrene –Induced Socs3 Expression Via AhR / Stat3 Pathway In ARPE-19 Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭哲志,鄭幼文 | |
| dc.subject.keyword | 眼睛,視網膜病變,苯芘, | zh_TW |
| dc.subject.keyword | ocular,retinopathy,B[a]P, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201801403 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
