請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 康照洲 | |
| dc.contributor.author | Yen-Ling Kuo | en |
| dc.contributor.author | 郭妍伶 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:12:37Z | - |
| dc.date.available | 2018-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-15 | |
| dc.identifier.citation | Ahmed, S.M., Luo, L., Namani, A., Wang, X.J., and Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et biophysica acta 1863, 585-597.
Batliwala, S., Xavier, C., Liu, Y., Wu, H., and Pang, I.H. (2017). Involvement of Nrf2 in Ocular Diseases. Oxidative medicine and cellular longevity 2017, 1703810. Cannito, S., Novo, E., Compagnone, A., Valfre di Bonzo, L., Busletta, C., Zamara, E., Paternostro, C., Povero, D., Bandino, A., Bozzo, F., et al. (2008). Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis 29, 2267-2278. Cho, H.-Y., and Kleeberger, S.R. (2014). Noblesse Oblige: NRF2 Functions in the Airways. American Journal of Respiratory Cell and Molecular Biology 50, 844-847. Cho, H.-Y., van Houten, B., Wang, X., Miller-DeGraff, L., Fostel, J., Gladwell, W., Perrow, L., Panduri, V., Kobzik, L., Yamamoto, M., et al. (2012). Targeted Deletion of Nrf2 Impairs Lung Development and Oxidant Injury in Neonatal Mice. Antioxidants & Redox Signaling 17, 1066-1082. Copple, I.M., Goldring, C.E., Kitteringham, N.R., and Park, B.K. (2010). The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. In Adverse Drug Reactions (Springer), pp. 233-266. Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P. (2002). Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proceedings of the National Academy of Sciences 99, 11908-11913. Dong, R., Wang, Q., He, X.L., Chu, Y.K., Lu, J.G., and Ma, Q.J. (2007). Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-alpha-induced epithelial-mesenchymal transition of MCF-7 cells. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 40, 1071-1078. Duan, Z., Li, Y., and Li, L. (2018). Promoting epithelial-to-mesenchymal transition by D-kynurenine via activating aryl hydrocarbon receptor. Molecular and cellular biochemistry. Galanis, A., Pappa, A., Giannakakis, A., Lanitis, E., Dangaj, D., and Sandaltzopoulos, R. (2008). Reactive oxygen species and HIF-1 signalling in cancer. Cancer letters 266, 12-20. Haarmann-Stemmann, T., Abel, J., Fritsche, E., and Krutmann, J. (2012). The AhR-Nrf2 pathway in keratinocytes: on the road to chemoprevention? The Journal of investigative dermatology 132, 7-9. Henkler, F., Brinkmann, J., and Luch, A. (2010). The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers (Basel) 2, 376-396. Hockley, S.L., Arlt, V.M., Brewer, D., Te Poele, R., Workman, P., Giddings, I., and Phillips, D.H. (2007). AHR- and DNA-damage-mediated gene expression responses induced by benzo(a)pyrene in human cell lines. Chemical research in toxicology 20, 1797-1810. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., and Hatayama, I. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and biophysical research communications 236, 313-322. Itoh, K., Tong, K.I., and Yamamoto, M. (2004). Molecular mechanism activating Nrf2–Keap1 pathway in regulation of adaptive response to electrophiles. Free Radical Biology and Medicine 36, 1208-1213. Kikuchi, N., Ishii, Y., Morishima, Y., Yageta, Y., Haraguchi, N., Itoh, K., Yamamoto, M., and Hizawa, N. (2010). Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance. Respiratory Research 11, 31-31. Kim, K.H., Jahan, S.A., Kabir, E., and Brown, R.J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60, 71-80. Kobayashi, A., Ohta, T., and Yamamoto, M. (2004). Unique function of the Nrf2–Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods in enzymology 378, 273-286. Kong, A.-N.T., Owuor, E., Yu, R., Hebbar, V., Chen, C., Hu, R., and Mandlekar, S. (2001). Induction of xenobiotic enzymes by the map kinase pathway and the antioxidant or electrophile response element (ARE/EpRE) 1* 2, 3. Drug metabolism reviews 33, 255-271. Lee, C.C., Yang, W.H., Li, C.H., Cheng, Y.W., Tsai, C.H., and Kang, J.J. (2016). Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4. Cancer letters 376, 211-217. Li, C.H., Liu, C.W., Tsai, C.H., Peng, Y.J., Yang, Y.H., Liao, P.L., Lee, C.C., Cheng, Y.W., and Kang, J.J. (2017). Cytoplasmic aryl hydrocarbon receptor regulates glycogen synthase kinase 3 beta, accelerates vimentin degradation, and suppresses epithelial-mesenchymal transition in non-small cell lung cancer cells. Archives of toxicology 91, 2165-2178. Liu, H., He, X.J., Li, G.J., Ding, Q.X., Liang, W.X., and Fan, J. (2017). [Effects of microRNA-145 on epithelial-mesenchymal transition of TGF-beta1-induced human renal proximal tubular epithelial cells]. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics 19, 712-718. Luecke-Johansson, S., Gralla, M., Rundqvist, H., Ho, J.C., Johnson, R.S., Gradin, K., and Poellinger, L. (2017). A Molecular Mechanism To Switch the Aryl Hydrocarbon Receptor from a Transcription Factor to an E3 Ubiquitin Ligase. Molecular and Cellular Biology 37, e00630-00616. McMahon, M., Itoh, K., Yamamoto, M., and Hayes, J.D. (2003). Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. Journal of Biological Chemistry 278, 21592-21600. Miao, W., Hu, L., Scrivens, P.J., and Batist, G. (2005). Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. The Journal of biological chemistry 280, 20340-20348. Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J.D., and Yamamoto, M. (2002). Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1-12. Pan, M.-H., and Ho, C.-T. (2008). Chemopreventive effects of natural dietary compounds on cancer development. Chemical Society Reviews 37, 2558-2574. Rushmore, T.H., Morton, M.R., and Pickett, C.B. (1991). The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. Journal of Biological Chemistry 266, 11632-11639. Ryoo, I.-g., Ha, H., and Kwak, M.-K. (2014). Inhibitory Role of the KEAP1-NRF2 Pathway in TGFβ1-Stimulated Renal Epithelial Transition to Fibroblastic Cells: A Modulatory Effect on SMAD Signaling. PLoS ONE 9, e93265. Satta, S., Mahmoud, A.M., Wilkinson, F.L., Yvonne Alexander, M., and White, S.J. (2017). The Role of Nrf2 in Cardiovascular Function and Disease. Oxidative medicine and cellular longevity 2017, 9237263. Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiol Rev 85, 845-881. Surh, Y.-J., Kundu, J.K., and Na, H.-K. (2008). Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta medica 74, 1526-1539. Taguchi, K., Motohashi, H., and Yamamoto, M. (2011). Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes to Cells 16, 123-140. Tsai, C.H., Li, C.H., Cheng, Y.W., Lee, C.C., Liao, P.L., Lin, C.H., Huang, S.H., and Kang, J.J. (2017). The inhibition of lung cancer cell migration by AhR-regulated autophagy. Scientific reports 7, 41927. Tsuji, G., Takahara, M., Uchi, H., Matsuda, T., Chiba, T., Takeuchi, S., Yasukawa, F., Moroi, Y., and Furue, M. (2012). Identification of ketoconazole as an AhR-Nrf2 activator in cultured human keratinocytes: the basis of its anti-inflammatory effect. The Journal of investigative dermatology 132, 59-68. Tsuji, G., Takahara, M., Uchi, H., Takeuchi, S., Mitoma, C., Moroi, Y., and Furue, M. (2011). An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. J Dermatol Sci 62, 42-49. Wang, L., He, X., Szklarz, G.D., Bi, Y., Rojanasakul, Y., and Ma, Q. (2013). The aryl hydrocarbon receptor interacts with nuclear factor erythroid 2-related factor 2 to mediate induction of NAD(P)H:quinoneoxidoreductase 1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Archives of biochemistry and biophysics 537, 31-38. Wang, Z., Li, Y., and Sarkar, F.H. (2010). Signaling mechanism(s) of reactive oxygen species in Epithelial-Mesenchymal Transition reminiscent of cancer stem cells in tumor progression. Current stem cell research & therapy 5, 74-80. Wu, W.S., Tsai, R.K., Chang, C.H., Wang, S., Wu, J.R., and Chang, Y.X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Molecular cancer research : MCR 4, 747-758. Yang, N., Wang, L., Liu, J., Liu, L., Huang, J., Chen, X., and Luo, Z. (2018). MicroRNA-206 regulates the epithelial-mesenchymal transition and inhibits the invasion and metastasis of prostate cancer cells by targeting Annexin A2. Oncology letters 15, 8295-8302. Yao, D., Dai, C., and Peng, S. (2011). Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Molecular cancer research : MCR 9, 1608-1620. Zhao, B., Degroot, D.E., Hayashi, A., He, G., and Denison, M.S. (2010). CH223191 is a ligand-selective antagonist of the Ah (Dioxin) receptor. Toxicol Sci 117, 393-403. Zhou, W., Mo, X., Cui, W., Zhang, Z., Li, D., Li, L., Xu, L., Yao, H., and Gao, J. (2016). Nrf2 inhibits epithelial-mesenchymal transition by suppressing snail expression during pulmonary fibrosis. Scientific reports 6, 38646. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69310 | - |
| dc.description.abstract | 苯芘 ( Benzo[a]pyrene, B[a]P ) 為香菸中廣泛存在的多環芳香烴之一,可由多環芳香烴受體 ( Aryl hydrocarbon receptor, AhR ) 活化生物代謝途徑,進而促進細胞色素 P450 ( Cytochromes P450, CYP450 ) 將其水解代謝而產生活性氧化物( Reactive oxygen species, ROS )。近年流病研究統計,抽菸會增加眼部病變之機率,其中與 B[a]P 代謝過程所產生之 ROS 攻擊視網膜之視網膜色素上皮細胞 ( Retinal pigment epithelium, RPE ) 有關。RPE 可維持眼部代謝功能之平衡,其功能失常可引發視網膜病變,如增生性玻璃體視網膜病變(proliferativevitreoretinopathy, PVR)即為 RPE 的上皮細胞間質化 ( epithelial-mesenchymal transition, EMT ) 現象所造成,此疾病是視網膜手術後視網膜剝離的主要原因,且文獻指吸菸的人會因此疾病導致視網膜再次剝離的風險高於一般人,但病變之機制仍待進一步釐清。文獻指出 AhR 活化或者 ROS 皆會促進細胞 EMT,而香菸中的 B[a]P 同時刺激此兩個促進因素,因此本研究主要探討香菸中物質 B[a]P 是否造成 RPE 引起 EMT 現象,並探討其機制以釐清是否為導致 PVR 的原因之一。實驗使用 ARPE-19 細胞株,由細胞爬行試驗發現 B[a]P 會促進細胞爬行,並以 westernblot 發現 B[a]P 會促進 Vimentin 蛋白表現量增加,而當 AhR 受到抑制之下, Vimentin 蛋白表現量即不受 B[a]P 所誘導,證明 AhR 的確會調控 Vimentin 表現量。且從 ROS 螢光圖中顯示 B[a]P 會誘導 RPE 中 ROS 含量上升,而使用 ROS 抑制劑 ( N-Acetyl-cysteine, NAC ) 結合western bolt實驗後,發現抑制B[a]P產生之ROS後,Vimentin 表現量即不受B[a]P所影響,證明 AhR 透過代謝 B[a]P 產生 ROS 促使 Vimentin 蛋白表現量上升,進一步探討 B[a]P 透過 ROS 引起 EMT 的路徑,發現使用ROS抑制劑後,B[a]P 誘導 β-Catenin 的表現量上升即,GSK3β 表現量下降及不受 B[a]P 影響。綜合上述結果,本研究發現 B[a]P 的暴露會導致 RPE 細胞中產生 ROS,進而抑制 β-Catenin 的降解,導致細胞EMT;除此之外本實驗室過去研究亦發現, RPE 中之 AhR 與 抗氧化轉錄因子 -NF-E2 相關因子2( nuclear factor erythroid-2-related factor, Nrf2 )蛋白表現量顯著高於其它人類細胞株,Nrf2 可活化下游抗氧化基因,藉此保護細胞不受 ROS 傷害,但詳細機轉仍屬未知。因此本實驗最後也探討 B[a]P 暴露 RPE中 AhR 及 Nrf2 之間的交互作用,發現 AhR 除了利用轉譯後修飾調節Nrf2,從 RT-PCR 實驗結果也得知加入 B[a]P 後 Nrf2 mRNA表現量上升。進一步利用 CHIP 實驗證實 B[a]P 促使 AhR 入核,結合在 Nrf2 的 promoter region 使得 Nrf2 轉錄量上升,顯示 AhR 於眼部代謝扮演重要角色,而 AhR-Nrf2 之調控亦影響眼部疾病的發生。 | zh_TW |
| dc.description.abstract | Benzo[a]pyrene, one of the polycyclic aromatic hydrocarbons widely present in cigarettes and it would produce reactive oxygen species (ROS) after AhR metabolic processes. In recent years, studies have shown that smoking increases the risk of eye disease may be related to ROS produced by B[a]P metabolism attacking the retinal pigment epithelium cells (RPE). RPE can maintain the balance of ocular metabolic function, and its dysfunction can cause retinopathy, such as proliferative vitreoretinopathy (PVR), which is caused by epithelial-mesenchymal transition (EMT) of RPE. This disease is the main cause of retinal detachment after retinal surgery, and the literature indicates that people who smoke will have a higher risk of re-detachment of the retina than the average person, but the mechanism of the PVR remains to be further clarified. The literature indicates that both AhR activation and ROS promote cell EMT, while B[a]P in cigarettes stimulates these two stimulating factors. Therefore, the aim of this research is to study whether B[a]P in cigarettes causes RPE EMT, and clarify its mechanism. The ARPE-19 cell line was used in the experiment. The result shows that B[a]P promoted cell migration and western blot result show that B[a]P promote Vimentin protein expression, while when AhR was inhibited, Vimentin protein expression was not induced by B[a]P, demonstrating that AhR regulates Vimentin. It is shown from the ROS fluorescence that B[a]P induces ROS level in RPE, whereas after ROS inhibitors (N-Acetyl-cysteine, NAC) inhibition the expression of Vimentin was not affected by B[a]P, which proved that B[a]P produced ROS through AhR metabolism promoted the expression of Vimentin protein. Further, confirming the mechanism of ROS inducing EMT. We found that B[a]P induced the expression of β-Catenin and decreased GSK3β. After ROS inhibition, β-Catenin and GSK3β protein expression were not affected by B[a]P. Based on the above results, this study found that exposure to B[a]P leads to the production of ROS in RPE cells, which in turn inhibits the degradation of β-Catenin, leading to cellular EMT. In addition, Studies in our laboratory have also found that The protein expression of AhR and nuclear factor erythroid-2-related factor (Nrf2) in RPE is significantly higher than in other human cell lines. Nrf2 activates antioxidant genes, thereby protecting cells from ROS damage, Further previous studies showed that Nrf2 may be regulated by AhR. Therefore, the interaction between AhR and Nrf2 by B[a]P exposed in RPE was also discussed at the end of the experiment. It was found that AhR not only uses post-translational modification to regulate Nrf2, from RT-PCR results, it is also known that after B[a]P treatment, The amount of Nrf2 mRNA expression increased. Further used CHIP experiments to confirm that B[a]P promoted AhR nuclear import and binding to the promoter region of Nrf2 results in an increase of Nrf2 transcription level. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:12:37Z (GMT). No. of bitstreams: 1 ntu-107-R05447004-1.pdf: 3816555 bytes, checksum: 6f282811da24b7ce5d5450d250ae726e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 7
Abstract 9 縮寫表(Abbreviations) 11 第一章 緒論(Introduction) 13 1.1香菸與眼睛疾病關聯 13 1.2視網膜色素上皮細胞功能與疾病關聯 14 1.3上皮細胞間質轉換 14 1.4多環芳香烴化合物(Polycyclic Aromatic Hydrocarbons, PAH)及多環芳香烴受體(Aryl hydrocarbon receptor ,AhR) 15 1.5抗氧化轉錄因子Nuclear factor E2-related factor 2(Nrf2) 18 1.6研究動機 20 第二章 材料與方法 (Materials and Methods) 23 2.1實驗材料 23 2.1.1 細胞株 (Cell lines) 23 2.1.2 藥品與試劑 (Chemicals and Reagents) 23 2.1.3 抗體 (Antibodies) 25 2.2實驗方法 25 2.2.1細胞培養 (Cell culture) 25 2.2.2細胞毒性測試 (Cell viability test/MTT assay) 26 2.2.3 細胞爬行試驗(Transwell Cell Migration Assay) 26 2.2.4 氧化壓力偵測法(Cellular Reactive Oxygen Species Detection Assay) 27 2.2.5 細胞總蛋白質液收集 (Cell lysate collection) 27 2.2.6 西方墨點法 (Western blot analysis) 27 2.2.7 免疫沉澱法 (Immunoprecipitation) 28 2.2.8 細胞RNA 萃取 (RNA extraction) 28 2.2.9 反轉錄聚合酶鏈鎖反應 (Reverse Transcription Polymerase Chain Reaction, RT-PCR) 29 2.2.10 染色體免疫沉澱法 (Chromatin Immunoprecipitation, ChIP) 30 2.2.11 細胞核質分離 (Nuclear and cytoplasmic fraction) 30 2.2.12 統計分析 (Statistic analysis) 30 第三章 實驗結果 ( Results ) 33 3.1 RPE細胞存活率不受B[a]P所影響,但是其他人類細胞A549與HepG2受B[a]P作用細胞存活率下降 33 3.2 B[a]P誘導RPE細胞中Nrf2蛋白表現量上升 33 3.3 B[a]P會增加RPE細胞爬行能力 34 3.4 B[a]P使EMT marker Vimentin表現量上升具AhR依存性 34 3.5 B[a]P透過AhR產生ROS 35 3.6 B[a]P透過ROS誘導上皮細胞爬行及EMT 35 3.7 B[a]P透過AhR產生ROS抑制β-catnin的降促進細胞EMT甚至引起細胞爬行 36 3.8 Nrf2透過間接調控抑制B[a]P所誘導EMT 37 3.9 B[a]P影響Nrf2蛋白表現具AhR依賴性 38 3.10 Nrf2是因為B[a]P 透過AhR代謝產生的氧化壓力而使表現量上升 38 3.11 B[a]P誘導Nrf2 mRNA 表現具AhR依存性 39 3.12 B[a]P增強AhR蛋白與Nrf2 promoter之間的交互作用 39 3.13 AhR蛋白本身會促進Nrf2蛋白泛素化 40 第四章 討論 ( Discussion ) 42 4.1 ROS誘導EMT之路徑 42 4.2外源物質活化AhR調控Nrf2的其他可能機制 43 4.3由AhR knock out探討AhR之功能 43 4.4抑制 Nrf2使 EMT惡化的可能原因及藥物治療應用 44 第五章 結論 (Conclusion) 47 圖表集 ( Figures and Tables ) 49 參考文獻 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | NF-E2相關因子2 | zh_TW |
| dc.subject | 苯芘 | zh_TW |
| dc.subject | 視網膜色素上皮細胞 | zh_TW |
| dc.subject | 多環芳香烴受體 | zh_TW |
| dc.subject | 活性氧化物 | zh_TW |
| dc.subject | 上皮細胞間質化 | zh_TW |
| dc.subject | Benzo [a] pyrene | en |
| dc.subject | aryl hydrocarbon receptor | en |
| dc.subject | epithelial–mesenchymal transition | en |
| dc.subject | nuclear factor E2-related factor 2 | en |
| dc.subject | retinal pigment epithelium | en |
| dc.title | 苯芘透過活性氧化物誘發視網膜色素上皮細胞
上皮間質轉換機制之探討 | zh_TW |
| dc.title | Benzo[a]pyrene promote Retinal pigment epithelium cells EMT
by ROS induction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭幼文,蕭哲志 | |
| dc.subject.keyword | 苯芘,視網膜色素上皮細胞,多環芳香烴受體,活性氧化物,上皮細胞間質化,NF-E2相關因子2, | zh_TW |
| dc.subject.keyword | Benzo [a] pyrene,aryl hydrocarbon receptor,epithelial–mesenchymal transition,nuclear factor E2-related factor 2,retinal pigment epithelium, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU201801498 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
