請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69294完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡幸真(Hsing-Chen Tsai) | |
| dc.contributor.author | Yu-Yan Fu | en |
| dc.contributor.author | 傅于晏 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:12:17Z | - |
| dc.date.available | 2020-08-27 | |
| dc.date.copyright | 2020-08-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-20 | |
| dc.identifier.citation | 1. Lin, H.T., et al., Epidemiology and Survival Outcomes of Lung Cancer: A Population-Based Study. Biomed Research International, 2019. 2019: p. 19. 2. Cheng, T.Y.D., et al., The International Epidemiology of Lung Cancer: Latest Trends, Disparities, and Tumor Characteristics. Journal of Thoracic Oncology, 2016. 11(10): p. 1653-1671. 3. Atanackovic, D., et al., Characterization of effusion-infiltrating T cells: Benign versus malignant effusions. Clinical Cancer Research, 2004. 10(8): p. 2600-2608. 4. Scherpereel, A., et al., Defect in recruiting effector memory CD8(+) T-cells in malignant pleural effusions compared to normal pleural fluid. Bmc Cancer, 2013. 13: p. 9. 5. Prado-Garcia, H., et al., Effector, memory and naive CD8+T cells in peripheral blood and pleural effusion from lung adenocarcinoma patients. Lung Cancer, 2005. 47(3): p. 361-371. 6. Li, L.F., et al., Impaired T cell function in malignant pleural effusion is caused by TGF-beta derived predominantly from macrophages. International Journal of Cancer, 2016. 139(10): p. 2261-2269. 7. Shanker, P., et al., Impaired function of circulating HIV-specific CD8(+) T cells in chronic human immunodeficiency virus infection. Blood, 2000. 96(9): p. 3094-3101. 8. Zajac, A.J., et al., Viral immune evasion due to persistence of activated T cells without effector function. Journal of Experimental Medicine, 1998. 188(12): p. 2205-2213. 9. Blank, C.U., et al., Defining 'T cell exhaustion'. Nature Reviews Immunology, 2019. 19(11): p. 665-674. 10. Mann, T.H. and S.M. Kaech, CD8(+) T CELLS Tick-TOX, it's time for T cell exhaustion. Nature Immunology, 2019. 20(9): p. 1092-1094. 11. Wherry, E.J. and M. Kurachi, Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology, 2015. 15(8): p. 486-499. 12. Siddiqui, I., et al., Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity, 2019. 50(1): p. 195-+. 13. Havel, J.J., D. Chowell, and T.A. Chan, The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer, 2019. 19(3): p. 133-150. 14. Borghaei, H., et al., Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. New England Journal of Medicine, 2015. 373(17): p. 1627-1639. 15. Sul, J., et al., FDA Approval Summary: Pembrolizumab for the Treatment of Patients With Metastatic Non-Small Cell Lung Cancer Whose Tumors Express Programmed Death-Ligand 1. Oncologist, 2016. 21(5): p. 643-650. 16. Weinstock, C., et al., US Food and Drug Administration Approval Summary: Atezolizumab for Metastatic Non-Small Cell Lung Cancer. Clinical Cancer Research, 2017. 23(16): p. 4534-4539. 17. Kordbacheh, T., et al., Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Annals of Oncology, 2018. 29(2): p. 301-310. 18. Reck, M., et al., Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 2016. 375(19): p. 1823-1833. 19. Herbst, R.S., et al., Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet, 2016. 387(10027): p. 1540-1550. 20. Gandhi, L., et al., Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. New England Journal of Medicine, 2018. 378(22): p. 2078-2092. 21. Shin, D.S. and A. Ribas, The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? Current Opinion in Immunology, 2015. 33: p. 23-35. 22. Mazzone, R., et al., Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clinical Epigenetics, 2017. 9: p. 15. 23. Easwaran, H., H.C. Tsai, and S.B. Baylin, Cancer Epigenetics: Tumor Heterogeneity, Plasticity of Stem-like States, and Drug Resistance. Molecular Cell, 2014. 54(5): p. 716-727. 24. Esteller, M., CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 2002. 21(35): p. 5427-5440. 25. Kazanets, A., et al., Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochimica Et Biophysica Acta-Reviews on Cancer, 2016. 1865(2): p. 275-288. 26. Sen, D.R., et al., The epigenetic landscape of T cell exhaustion. Science, 2016. 354(6316): p. 1165-1169. 27. Thommen, D.S. and T.N. Schumacher, T Cell Dysfunction in Cancer. Cancer Cell, 2018. 33(4): p. 547-562. 28. Schietinger, A., et al., Tumor-Specific T Cell Dysfunction Is a Dynamic Antigen-Driven Differentiation Program Initiated Early during Tumorigenesis. Immunity, 2016. 45(2): p. 389-401. 29. Philip, M., et al., Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature, 2017. 545(7655): p. 452-+. 30. Miller, B.C., et al., Subsets of exhausted CD8+T cells differentially mediate tumor control and respond to checkpoint blockade. Cancer Immunology Research, 2020. 8(3): p. 72-72. 31. Pauken, K.E., et al., Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 2016. 354(6316): p. 1160-1165. 32. Dunn, J. and S. Rao, Epigenetics and immunotherapy: The current state of play. Molecular Immunology, 2017. 87: p. 227-239. 33. Vodnala, S.K., et al., T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science, 2019. 363(6434): p. 1417-+. 34. Hersperger, A.R., et al., Increased HIV-specific CD8(+) T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood, 2011. 117(14): p. 3799-3808. 35. Kao, C., et al., Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8(+) T cell responses during chronic infection. Nature Immunology, 2011. 12(7): p. 663-U117. 36. Paley, M.A., et al., Progenitor and Terminal Subsets of CD8(+) T Cells Cooperate to Contain Chronic Viral Infection. Science, 2012. 338(6111): p. 1220-1225. 37. Bannister, A.J. and T. Kouzarides, Regulation of chromatin by histone modifications. Cell Research, 2011. 21(3): p. 381-395. 38. Dhalluin, C., et al., Structure and ligand of a histone acetyltransferase bromodomain. Nature, 1999. 399(6735): p. 491-496. 39. Fujisawa, T. and P. Filippakopoulos, Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nature Reviews Molecular Cell Biology, 2017. 18(4): p. 246-262. 40. Filippakopoulos, P. and S. Knapp, Targeting bromodomains: epigenetic readers of lysine acetylation. Nature Reviews Drug Discovery, 2014. 13(5): p. 339-358. 41. Delmore, J.E., et al., BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc. Cell, 2011. 146(6): p. 903-916. 42. Toyoshima, M., et al., Functional genomics identifies therapeutic targets for MYC-driven cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(24): p. 9545-9550. 43. Baratta, M.G., et al., An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(1): p. 232-237. 44. Zuber, J., et al., RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature, 2011. 478(7370): p. 524-U124. 45. Marcotte, R., et al., Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance. Cell, 2016. 164(1-2): p. 293-309. 46. Zou, Z., et al., Brd4 maintains constitutively active NF-kappa B in cancer cells by binding to acetylated RelA. Oncogene, 2014. 33(18): p. 2395-2404. 47. Feng, Q., et al., An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Research, 2014. 24(7): p. 809-819. 48. Wu, S.Y., et al., Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Development, 2006. 20(17): p. 2383-2396. 49. Sinha, A., D.V. Faller, and G.V. Denis, Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochemical Journal, 2005. 387: p. 257-269. 50. Stewart, H.J.S., et al., BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer Medicine, 2013. 2(6): p. 826-835. 51. Dawson, M.A., et al., Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011. 478(7370): p. 529-533. 52. Shi, J., et al., Disrupting the Interaction of BRD4 with Diacetylated Twist Suppresses Tumorigenesis in Basal-like Breast Cancer. Cancer Cell, 2014. 25(2): p. 210-225. 53. Filippakopoulos, P., et al., Selective inhibition of BET bromodomains. Nature, 2010. 468(7327): p. 1067-1073. 54. Berenguer-Daize, C., et al., OTX015 (MK-8628), a novel BET inhibitor, displays in vitro and in vivo antitumor effects alone and in combination with conventional therapies in glioblastoma models. International Journal of Cancer, 2016. 139(9): p. 2047-2055. 55. Coude, M.M., et al., BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget, 2015. 6(19): p. 17698-17712. 56. Im, S.J., et al., Defining CD8(+) T cells that provide the proliferative burst after PD-1 therapy. Nature, 2016. 537(7620): p. 417-+. 57. He, R., et al., Follicular CXCR5-expressing CD8(+) T cells curtail chronic viral infection (vol 537, pg 412, 2016). Nature, 2016. 540(7633): p. 1. 58. Utzschneider, D.T., et al., T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections. Immunity, 2016. 45(2): p. 415-427. 59. Blackburn, S.D., et al., Selective expansion of a subset of exhausted CD8 T cells by alpha PD-L1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(39): p. 15016-15021. 60. Henning, A.N., R. Roychoudhuri, and N.P. Restifo, Epigenetic control of CD8(+) T cell differentiation. Nature Reviews Immunology, 2018. 18(5): p. 340-356. 61. Scott-Browne, J.P., et al., Dynamic Changes in Chromatin Accessibility Occur in CD8(+) T Cells Responding to Viral Infection. Immunity, 2016. 45(6): p. 1327-1340. 62. Dey, A., et al., Brd4 Marks Select Genes on Mitotic Chromatin and Directs Postmitotic Transcription. Molecular Biology of the Cell, 2009. 20(23): p. 4899-4909. 63. Jia, B., et al., Eomes(+)T-bet(low) CD8(+) T Cells Are Functionally Impaired and Are Associated with Poor Clinical Outcome in Patients with Acute Myeloid Leukemia. Cancer Research, 2019. 79(7): p. 1635-1645. 64. Sahai, V., et al., Targeting bet bromodomain proteins in solid tumors. Oncotarget, 2016. 7(33): p. 53997-54009. 65. Wu, Y.C., et al., EPIGENETIC THERAPY MODULATES POLYFUNCTIONALITY OF TUMOR-REACTIVE T CELLS IN NON-SMALL CELL LUNG CANCER. Respirology, 2018. 23: p. 71-72. 66. Pauken, K.E. and E.J. Wherry, Overcoming T cell exhaustion in infection and cancer. Trends in Immunology, 2015. 36(4): p. 265-276. 67. Zhou, Q., et al., Coexpression of Tim-3 and PD-1 identifies a CD8(+) T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, 2011. 117(17): p. 4501-4510. 68. Woo, S.R., et al., Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape. Cancer Research, 2012. 72(4): p. 917-927. 69. Thommen, D.S., et al., Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors. Cancer Immunology Research, 2015. 3(12): p. 1344-1355. 70. Sakuishi, K., et al., Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity (vol 207, pg 2187, 2010). Journal of Experimental Medicine, 2011. 208(6): p. 1331-1331. 71. Granier, C., et al., Tim-3 Expression on Tumor-Infiltrating PD-1(+)CD8(+)T Cells Correlates with Poor Clinical Outcome in Renal Cell Carcinoma. Cancer Research, 2017. 77(5): p. 1075-1082. 72. Fourcade, J., et al., Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8(+) T cell dysfunction in melanoma patients. Journal of Experimental Medicine, 2010. 207(10): p. 2175-2186. 73. Smyth, M.J., et al., Combination cancer immunotherapies tailored to the tumour microenvironment. Nature Reviews Clinical Oncology, 2016. 13(3): p. 143-158. 74. Adeegbe, D.O., et al., BET Bromodomain Inhibition Cooperates with PD-1 Blockade to Facilitate Antitumor Response in Kras-Mutant Non-Small Cell Lung Cancer. Cancer Immunology Research, 2018. 6(10): p. 1234-1245. 75. Stathis, A. and F. Bertoni, BET Proteins as Targets for Anticancer Treatment. Cancer Discovery, 2018. 8(1): p. 24-36. 76. Adeegbe, D.O., et al., Synergistic Immunostimulatory Effects and Therapeutic Benefit of Combined Histone Deacetylase and Bromodomain Inhibition in Non-Small Cell Lung Cancer. Cancer Discovery, 2017. 7(8): p. 852-867. 77. Wei, S.C., C.R. Duffy, and J.P. Allison, Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 2018. 8(9): p. 1069-1086. 78. Bisgrovet, D.A., et al., Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(34): p. 13690-13695. 79. Hogg, S.J., et al., BET-Bromodomain Inhibitors Engage the Host Immune System and Regulate Expression of the Immune Checkpoint Ligand PD-L1. Cell Reports, 2017. 18(9): p. 2162-2174. 80. Gao, X.N., et al., Demethylating treatment suppresses natural killer cell cytolytic activity. Molecular Immunology, 2009. 46(10): p. 2064-2070. 81. Sohlberg, E., et al., Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome. Oncotarget, 2015. 6(33): p. 34178-34190. 82. Kroesen, M., et al., HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget, 2014. 5(16): p. 6558-6572. 83. Armeanu, S., et al., Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D Ligands by the histone deacetylase inhibitor sodium valproate. Cancer Research, 2005. 65(14): p. 6321-6329. 84. Ropero, S. and M. Esteller, The role of histone deacetylases (HDACs) in human cancer. Molecular Oncology, 2007. 1(1): p. 19-25. 85. 吳怡潔. 探討表觀遺傳治療對肺癌中腫瘤反應T細胞的免疫調節作用 / 吳怡潔 = Immunomodulatory Effects of Epigenetic Therapy on Tumor Reactive T Cells in Lung Cancer / Yi-Chieh Wu. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69294 | - |
| dc.description.abstract | 肺癌為全球癌症死亡之首因,因其難以診斷的特性,使得許多病人確診時皆已為癌症轉移階段,此時化學療法或放射線治療的效果十分有限。過去許多研究證實,腫瘤旁邊常有許多白血球浸潤,尤其是CD8+ T細胞,這些白血球對於腫瘤的治療具有關鍵性的影響。因長期接受腫瘤抗原刺激,多數腫瘤浸潤淋巴球 (tumor-infiltrating lymphocytes, TILs) 處於耗竭 (exhausted) 狀態,分泌較少的細胞激素、表現較多的抑制性免疫檢查點 (immune checkpoints),以及遇到刺激時呈現低下的分化能力。失去功能的耗竭CD8 T細胞 (Exhausted T cell, TEX) 最終無法有效的清除癌細胞。免疫檢查點阻抗療法 (Immune checkpoint blockade therapy, ICB) 即是利用阻抗免疫檢查點以降低免疫負調控反應,增加T細胞對癌細胞的毒殺能力。免疫檢查點阻抗療法並非對每一位患者都有良好的治療效果。近年的研究指出,耗竭T細胞存在多樣性,可區分為先驅耗竭T細胞 (progenitor TEX)及末端耗竭T細胞 (terminally TEX),其中前驅耗竭T細胞雖表現高量的免疫檢查點,依然具有高度分化的能力,並且對免疫檢查點阻抗療法的反應較良好。然而,研究發現,使用免疫檢查點阻抗療法後,耗竭T細胞雖然短暫恢復功能,但無法回復成記憶T細胞 (memory T cells) 或功能T細胞的表觀遺傳基因體 (epigenetic landscapes)。因此,我們假設表觀遺傳藥物可藉由重整表觀遺傳調控的方式改善T細胞的功能。實驗室先前的研究中,透過藥物篩選,從145個表觀遺傳藥物中,發現含溴結構域抑制劑 (bromodomain inhibitors, BETi),可以提升健康人的周邊血液中CD4及CD8 T細胞的多功能性 (T cell polyfunctionality)。 接續先前的研究,我的研究目標是進一步探討含溴結構域抑制劑對於肺癌中失能性T細胞 (dysfunctional T cell) 的免疫調控並進行功能性實驗,我利用肺癌病人惡性胸水 (malignant pleural effusions, MPE)來進行研究,惡性胸水內含有肺癌細胞與免疫細胞,適合用來研究腫瘤微環境內的細胞交互作用。首先,我們使用與耗竭T細胞有關的轉錄因子—Eomes及T-bet來評估胸水中T細胞的免疫功能,發現雖然胸水內部份T細胞處於活化的狀態,可分泌細胞激素並有高度的分化能力,但是末端耗竭T細胞佔所有T細胞的比例明顯較健康受試者高,我們並發現含溴結構域抑制劑可提升胸水中CD8與CD4 T 細胞的多功能性、降低免疫檢查點的表現量、並增加CD8 T細胞的比例。此外,含溴結構域抑制劑可增加惡性胸水中先驅耗竭T細胞 (progenitor exhausted T cell),同時減少末端耗竭T細胞。 我們更進一步將含溴結構域抑制劑應用在動物實驗上。我們使用小鼠之同源原位肺癌模型,等腫瘤生成後,使用低劑量的含溴結構域抑制劑JQ1治療四週,發現JQ1顯著抑制腫瘤的生長並提升小鼠的存活率。綜合上述體外細胞與活體動物實驗結果,我們證明含溴結構域抑制劑對於耗竭T細胞的具有免疫調控的作用,並可有效的抑制老鼠腫瘤。未來可運用於開發新的免疫療法,造福更多肺癌病人。 | zh_TW |
| dc.description.abstract | Lung cancer is the leading cause of cancer deaths worldwide. Detection of lung cancer at early stages can be difficult since patients tend to be asymptomatic at this stage. Thus, many lung cancer patients present with metastatic diseases at first diagnosis when the efficacy of chemotherapy or radiotherapy is limited. It has been shown that tumor tissues are infiltrated by many immune cells, in particular CD8+ T cells, which play crucial roles in the fight against cancer. On the other hand, due to continuous stimulation of tumor antigens, many tumor-infiltrating lymphocytes (TILs) exhibit the exhausted phenotype, characterized by decreased secretion of effector cytokines, increased expression of immune checkpoints, and defective proliferative capabilities upon stimulation. These exhausted T cells (TEX) are unable to eliminate cancer cells effectively. Clinically, immune checkpoint blockade therapy (ICB) counteracts the inhibitory signaling triggered by immune checkpoints thereby reinvigorating exhausted T cells and enhancing their cytotoxicity. Notably, not every patient receiving immune checkpoint blockade has favorable clinical responses. Further studies showed exhausted T cells are a heterogeneous population composed of progenitor and terminally exhausted subsets. Progenitor exhausted T cells, while expressing high levels of immune checkpoints, have stem-cell properties with further differentiation capacity and respond better to checkpoint blockade therapy as opposed to terminally exhausted T cells. Nevertheless, even though checkpoint blockade therapy may temporarily restore the functions of exhausted T cells, the therapy can not reverse the intrinsic epigenetic landscape of the exhausted phenotype back to that of memory or effector phenotypes of T cells. Therefore, we hypothesized that epigenetic drugs could restore the functions of T cells by reprogramming epigenetic regulations. Our laboratory has previously conducted a screen for T cell poly-functionality using an epigenetic compound library, and found that inhibitors of bromodomain and extraterminal domain (BETi) can enhance the polyfunctionality of CD4+ and CD8+ T cells from the peripheral blood of healthy volunteers. Based on these observations, I aimed to investigate the immunomodulatory effects of BETi on dysfunctional T cells from malignant pleural effusions (MPE) in lung cancer patients, which represent a unique tumor microenvironment where cancer cells and various immune cells interact. First, I investigated the functional states of malignant pleural effusion T cells based on the expression levels of two exhaustion-related transcription factors — Eomes and T-bet. I found that, compared to the circulating T cells from healthy donors, the percentages of terminally exhausted T cells (EomeshiT-Betlo) in malignant pleural effusion were significantly higher. Furthermore, BETi treatment significantly enhanced the polyfunctionality of CD4+ and CD8+ T cells from MPE and decreased the expression of immune checkpoints. Besides, BETi treatment decreased the terminally exhausted T cell subset while increasing the progenitor exhausted T cell subset. Most importantly, we investigated the therapeutic potential of BETi in a syngeneic orthotopic model of mouse lung adenocarcinoma — Lewis lung carcinoma. We showed that JQ1 treatment significantly diminished the tumor growth and improved the overall survivals. In conclusion, through the in vitro and in vivo experiments, we demonstrated the immunomodulatory effects of BETi on exhausted T cells, which paves way to the development of novel immunotherapeutic strategies in treating lung cancer patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:12:17Z (GMT). No. of bitstreams: 1 U0001-1808202015464200.pdf: 3524859 bytes, checksum: b7c519e460923c7f15cd8df00eab8a7f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 序言及謝辭 i 中文摘要 ii Abstract iv Contents vii List of Figures xi List of Tables xiii List of Supplementary Figures xiv List of Abbreviations xv 1. Introduction 1 1.1. Lung cancer 1 1.1.1. The epidemiology of Lung cancer 1 1.1.2. Malignant pleural effusion (MPE) 2 1.2. Exhausted T cells 3 1.2.1. Signature of exhausted T cells 3 1.2.2. Expression of immune checkpoints on exhausted T cells 4 1.2.3. Immune checkpoint blockade therapy and its challenge 5 1.3. Epigenetics 6 1.3.1. Concepts of epigenetic regulation in cancer and exhausted T cells 6 1.3.2. BET bromodomain inhibitor (BETi) 8 1.3.3. Epigenetic regulation in subpopulations of exhausted T cells 10 1.4. Previous data from our laboratory 11 2. Aims of the study 12 3. Materials and Methods 13 3.1. Study samples 13 3.2. Processing of malignant pleural effusion (MPE) 13 3.3. Processing of peripheral blood mononuclear cells (PBMC) 14 3.4. Cryopreservation of lymphocytes 15 3.5. Ex vivo expansion of primary T cells and epigenetic drugs treatment 15 3.6. T cell stimulation 17 3.6.1. PMA and ionomycin stimulation 17 3.6.2. T cell stimulation with Dynabeads Human T-Activator CD3/CD28 17 3.7. Staining for Flow cytometry 18 3.7.1. Staining of intracellular cytokines 18 3.7.2. Staining of inhibitory receptors 19 3.7.3. Staining of transcription factors (Eomes and T-bet) 19 3.7.4. Staining of regulatory T cells 20 3.8. Lung cancer xenograft mouse models 21 3.9. Statistical Analysis 21 4. Results 23 4.1. Molecular characterization of CD8+ T cell subsets in malignant pleural effusions 23 4.1.1. The Eomeshi T-betlo T cell subset is significantly enriched in malignant pleural effusions. 23 4.2. The immunomodulatory effects of the BETis’ on MPE T cells. 25 4.2.1. BETis enhanced T cell polyfunctionality of MPE T cells. 25 4.2.2. JQ1 treatment reduced the expression of inhibitory receptors on MPE T cells. 26 4.2.3. JQ1 treatment increased the progenitor TEX CD8+ T cell subset in MPEs. 27 4.3. The effects of combined epigenetic drugs on T cells functions in vitro. 29 4.4. Therapeutic effects of low-dose JQ1 treatment in a syngenetic mouse lung cancer model in vivo. 30 5. Discussion 31 6. Conclusion 36 Reference 37 Figures 50 Tables 74 Supplementary Figures 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 惡性胸水 | zh_TW |
| dc.subject | 耗竭T細胞 | zh_TW |
| dc.subject | 表觀遺傳學 | zh_TW |
| dc.subject | 免疫療法 | zh_TW |
| dc.subject | Lung cancer | en |
| dc.subject | Malignant pleural effusion | en |
| dc.subject | Immunotherapy | en |
| dc.subject | Epigenetics | en |
| dc.subject | Exhausted T cell | en |
| dc.title | 探討含溴結構域抑制劑對肺癌反應T細胞的免疫調節作用 | zh_TW |
| dc.title | Immunomodulatory effects of BET bromodomain inhibitors on tumor-reactive T cells in lung cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張永祺(Yung-Chi Chang),邱彥霖(Yen-Ling Chiu) | |
| dc.subject.keyword | 肺癌,免疫療法,表觀遺傳學,耗竭T細胞,惡性胸水, | zh_TW |
| dc.subject.keyword | Lung cancer,Exhausted T cell,Epigenetics,Immunotherapy,Malignant pleural effusion, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202003987 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202015464200.pdf 未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
