請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69287完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉光勝 | |
| dc.contributor.author | Zheng-Fang Liu | en |
| dc.contributor.author | 劉正芳 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:12:08Z | - |
| dc.date.available | 2019-08-24 | |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-16 | |
| dc.identifier.citation | 1. Zhang JY, Dong LW, Ren Q, Wang XZ, Yang Y, Zhou W, Zhu CH, Meng X, Zhu GQ: Simple and rapid detection of Salmonella by direct PCR amplification of gene fimW. Curr Microbiol 2014, 69(4):429-435.
2. Tindall BJ, Grimont PA, Garrity GM, Euzeby JP: Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 2005, 55(Pt 1):521-524. 3. Voogt N, Wannet WJ, Nagelkerke NJ, Henken AM: Differences between national reference laboratories of the European community in their ability to serotype Salmonella species. Eur J Clin Microbiol Infect Dis 2002, 21(3):204-208. 4. Grimont P, Weill F-X: Antigenic Formulae of the Salmonella serovars, (9th ed.) Paris: WHO Collaborating Centre for Reference and Research on Salmonella; 2007. 5. Lamas A, Miranda JM, Regal P, Vazquez B, Franco CM, Cepeda A: A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol Res 2018, 206:60-73. 6. Giammanco GM, Pignato S, Mammina C, Grimont F, Grimont PA, Nastasi A, Giammanco G: Persistent Endemicity of Salmonella bongori 48:z35:− in Southern Italy: Molecular Characterization of Human, Animal, and Environmental Isolates. 2002, 40:3502-3505. 7. Darwin KH, Miller VL: Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 1999, 12(3):405-428. 8. CDC: Diagnosis and management of foodborne illnesses: a primer for physicians. MMWR Recomm Rep 2001, 50:1-69. 9. Cohen JI, Bartlett JA, Corey GR: Extra-intestinal manifestations of salmonella infections. Medicine 1987, 66(5):349-388. 10. Hurd HS, Gailey JK, McKean JD, Rostagno MH: Rapid infection in market-weight swine following exposure to a Salmonella typhimurium-contaminated environment. Am J Vet Res 2001, 62(8):1194-1197. 11. Wallis TS, Galyov EE: Molecular basis of Salmonella-induced enteritis. Mol Microbiol 2000, 36(5):997-1005. 12. Foster JW, Hall HK: Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 1991, 173(16):5129-5135. 13. Finlay BB, Ruschkowski S, Dedhar S: Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells. J Cell Sci 1991, 99 ( Pt 2):283-296. 14. Francis CL, Starnbach MN, Falkow S: Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol Microbiol 1992, 6(21):3077-3087. 15. Francis CL, Ryan TA, Jones BD, Smith SJ, Falkow S: Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 1993, 364(6438):639-642. 16. Garcia-del Portillo F, Finlay BB: Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell. Infect Immun 1994, 62(10):4641-4645. 17. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature immunology 2001, 2(4):361-367. 18. Collinson SK, Liu SL, Clouthier SC, Banser PA, Doran JL, Sanderson KE, Kay WW: The location of four fimbrin-encoding genes, agfA, fimA, sefA and sefD, on the Salmonella enteritidis and/or S. typhimurium XbaI-BlnI genomic restriction maps. Gene 1996, 169(1):75-80. 19. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F et al: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413(6858):852-856. 20. Hansmeier N, Miskiewicz K, Elpers L, Liss V, Hensel M, Sterzenbach T: Functional expression of the entire adhesiome of Salmonella enterica serotype Typhimurium. Scientific reports 2017, 7(1):10326. 21. Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, Baumler AJ: The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 2005, 73(6):3358-3366. 22. Humphries AD, Raffatellu M, Winter S, Weening EH, Kingsley RA, Droleskey R, Zhang S, Figueiredo J, Khare S, Nunes J et al: The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 2003, 48(5):1357-1376. 23. Korhonen TK, Lounatmaa K, Ranta H, Kuusi N: Characterization of type 1 pili of Salmonella typhimurium LT2. J Bacteriol 1980, 144(2):800-805. 24. Purcell BK, Pruckler J, Clegg S: Nucleotide sequences of the genes encoding type 1 fimbrial subunits of Klebsiella pneumoniae and Salmonella typhimurium. J Bacteriol 1987, 169(12):5831-5834. 25. Rossolini GM, Muscas P, Chiesurin A, Satta G: Analysis of the Salmonella fim gene cluster: identification of a new gene (fimI) encoding a fimbrin-like protein and located downstream from the fimA gene. FEMS Microbiol Lett 1993, 114(3):259-265. 26. Hancox LS, Yeh KS, Clegg S: Construction and characterization of type 1 non-fimbriate and non-adhesive mutants of Salmonella typhimurium. FEMS Immunol Med Microbiol 1997, 19(4):289-296. 27. Gerlach RG, Hensel M: Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 2007, 297(6):401-415. 28. Vetsch M, Puorger C, Spirig T, Grauschopf U, Weber-Ban EU, Glockshuber R: Pilus chaperones represent a new type of protein-folding catalyst. Nature 2004, 431(7006):329-333. 29. Nuccio SP, Baumler AJ: Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007, 71(4):551-575. 30. Yue M, Rankin SC, Blanchet RT, Nulton JD, Edwards RA, Schifferli DM: Diversification of the Salmonella fimbriae: a model of macro- and microevolution. PLoS One 2012, 7(6):e38596. 31. Yeh KS, Tinker JK, Clegg S: FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 2002, 46(1):1-10. 32. Tinker JK, Clegg S: Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. Infect Immun 2000, 68(6):3305–3313. 33. Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS: FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 2014, 169(7-8):496-503. 34. Tinker JK, Clegg S: Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol Microbiol 2001, 40(3):757-768. 35. Tinker JK, Hancox LS, Clegg S: FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. J Bacteriol 2001, 183(2):435-442. 36. Wang KC, Hsu YH, Huang YN, Yeh KS: A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol 2012, 12:111. 37. Duguid JP, Anderson ES, Campbell I: Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol 1966, 92(1):107-138. 38. Tavendale A, Jardine CK, Old DC, Duguid JP: Haemagglutinins and adhesion of Salmonella typhimurium to HEp2 and HeLa cells. J Med Microbiol 1983, 16(3):371-380. 39. Nuccio SP, Chessa D, Weening EH, Raffatellu M, Clegg S, Baumler AJ: SIMPLE approach for isolating mutants expressing fimbriae. Appl Environ Microbiol 2007, 73(14):4455-4462. 40. Snyder JA, Haugen BJ, Lockatell CV, Maroncle N, Hagan EC, Johnson DE, Welch RA, Mobley HL: Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 2005, 73(11):7588-7596. 41. Lopez-Garrido J, Casadesus J: Crosstalk between virulence loci: regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by products of the std fimbrial operon. PLoS One 2012, 7(1):e30499. 42. Baxter MA, Jones BD: Two-component regulators control hilA expression by controlling fimZ and hilE expression within Salmonella enterica serovar Typhimurium. Infect Immun 2015, 83(3):978-985. 43. Pascual DW, Suo Z, Cao L, Avci R, Yang X: Attenuating gene expression (AGE) for vaccine development. Virulence 2013, 4(5):384-390. 44. Yang X, Thornburg T, Suo Z, Jun S, Robison A, Li J, Lim T, Cao L, Hoyt T, Avci R et al: Flagella overexpression attenuates Salmonella pathogenesis. PLoS One 2012, 7(10):e46828. 45. Cao L, Lim T, Jun S, Thornburg T, Avci R, Yang X: Vulnerabilities in Yersinia pestis caf operon are unveiled by a Salmonella vector. PLoS One 2012, 7(4):e36283. 46. Chang CH: FimZ of Salmonella enterica serovar Typhimurium may mediate different physiological functions: National Taiwan University master thesis; 2017. 47. Akerley BJ, Cotter PA, Miller JF: Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 1995, 80(4):611-620. 48. Li X, Rasko DA, Lockatell CV, Johnson DE, Mobley HL: Repression of bacterial motility by a novel fimbrial gene product. Embo J 2001, 20(17):4854-4862. 49. Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K: Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol 2007, 189(3):950-957. 50. Wu KH, Wang KC, Lee LW, Huang YN, Yeh KS: A constitutively mannose-sensitive agglutinating Salmonella enterica subsp. enterica serovar typhimurium strain, carrying a transposon in the fimbrial usher gene stbC, exhibits multidrug resistance and flagellated phenotypes. ScientificWorldJournal 2012, 2012:280264. 51. Saini S, Pearl JA, Rao CV: Role of FimW, FimY, and FimZ in regulating the expression of type I fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 2009, 191(9):3003-3010. 52. Im H, Grass JA, Johnson KD, Boyer ME, Wu J, Bresnick EH: Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation. Methods Mol Biol 2004, 284:129-146. 53. Jing D, Agnew J, Patton WF, Hendrickson J, Beechem JM: A sensitive two-color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels. Proteomics 2003, 3(7):1172-1180. 54. Robinson LS, Ashman EM, Hultgren SJ, Chapman MR: Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 2006, 59(3):870-881. 55. Hancock RE: Peptide antibiotics. Lancet 1997, 349(9049):418-422. 56. Vaara M: Polymyxins and their novel derivatives. Curr Opin Microbiol 2010, 13(5):574-581. 57. Douglass II WC: Hydrogen Peroxide: Medical Miracle: Seattle: Rhino Publishing; 2003. 58. Fang FC, DeGroote MA, Foster JW, Baumler AJ, Ochsner U, Testerman T, Bearson S, Giard JC, Xu Y, Campbell G et al: Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(13):7502-7507. 59. Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG, Fang FC: DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 1995, 95(3):1047-1053. 60. Merritt ME, Donaldson JR: Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 2009, 58(Pt 12):1533-1541. 61. Bullas LR, Ryu JI: Salmonella typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 1983, 156(1):471-474. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69287 | - |
| dc.description.abstract | 鼠傷寒沙門氏菌是造成人和動物沙門氏菌感染症的最重要致病原之一。鼠傷寒沙門氏菌的傳播是藉由糞口途徑進行的,並且此微生物是透過菌體外膜上的附屬物來吸附於腸道上皮細胞,其中此附屬物大部分是線毛結構。第一型線毛或所謂的普通線毛常見於鼠傷寒沙門氏菌,並且與鼠傷寒沙門氏菌的致病機制有關。第一型線毛的表現是由fim基因組所編碼,該基因組是由六個結構基因fimA、fimI、fimC、fimD、fimH和fimF以及五個調控基因fimZ、fimY、stm0551、fimW和fimU所組成的。其中FimW的胺基酸序列與具有螺旋-轉角-螺旋DNA結合結構組元的大多數轉錄調控子之胺基酸序列相似。為了進一步探討fimW基因在線毛調控方面所扮演的角色,藉由等位基因置換的方法構築了一株fimW突變菌株。當fimW突變菌株培養在有利於第一型線毛表現的靜置液態的培養液中,或者培養於不利第一型線毛表現的固態培養基環境,此菌株都會持續表現第一型線毛。由RT-PCR分析顯示,在固態環境培養的fimW突變菌株,其線毛主結構基因fimA的mRNA表現量比wild type菌株高。而在固態培養環境的fimW突變菌株,其線毛的調控基因fimZ、fimY、fimU和stm0551的mRNA表現量比wild type菌株來得高。本研究也使用pET-30a系統構築FimW融合蛋白。進行電泳凝膠遷移實驗以研究FimW蛋白是否與特定DNA片段相互作用。實驗使用FimW蛋白和含有大小200至300鹼基對的fimA、fimU、fimW、fimY、fimZ和stm0551之上游區域片段以及鼠傷寒沙門氏菌中另外10種線毛的主要次單位的DNA片段進行。在本研究中未觀察到FimW蛋白與DNA有相互作用的情形。由於fimW突變菌株持續性地產生第一型菌毛,因此我們意圖進一步研究這種突變菌株是否適合做為減毒基因表現(AGE)疫苗開發的候選菌株。目前初步結果顯示,抗生素polyimox B和紅黴素的最小抑制濃度在fimW突變菌株中會降低,這說明了fimW基因的缺失,會降低細菌細胞膜的穩定性。使用fimW突變菌株做為減毒沙門氏菌疫苗株的適用性值得進一步的闡明。總結上述說明,FimW做為抑制因子來調節鼠傷寒沙門氏菌第一型線毛的表現。目前的結果,EMSA未觀察到FimW與fim專一性的DNA或其他10種線毛次單位的啟動子DNA之間有相互作用。缺乏fimW基因會影響細菌細胞膜的完整性,fimW突變菌株可能可以成為AGE疫苗的候選菌株。 | zh_TW |
| dc.description.abstract | Salmonella enterica serovar Typhimurium is one of the most important causative agents responsible for salmonellosis in both human and animals. Transmission of S. Typhimurium is by oral-fecal route and this microorganism adheres epithelial cells of intestinal tract by the appendages present on the outer membrane, most of which are fimbrial structures. Type 1 fimbriae or so-called common fimbriae are frequently found and have been implicated in pathogenesis of S. Typhimurium. Phenotypic expression of type 1 fimbriae is encoded by the fim gene cluster which is composed of six structural genes fimA, fimI, fimC, fimD, fimH and fimF, and five regulatory genes fimZ, fimY, stm0551, fimW and fimU. The amino acid sequence of FimW shares similarities to those of most transcriptional regulators possessing helix-turn-helix DNA binding motif. To further explore the role that fimW plays in terms of fimbrial regulation, a fimW mutant strain was constructed by allelic exchange. The fimW mutant constitutively produced type 1 fimbriae when cultured in static broth, a medium favorable for fimbrial production, or on solid agar medium, which is a condition usually impedes fimbrial expression. RT-PCR analysis revealed that the mRNA level of fimbrial subunit gene fimA was more prominent in the fimW mutant strain cultured on solid agar than that of the parental strain. The mRNA level of the fimbrial regulator gene fimZ, fimY, fimU and stm0551 were increased in the fimW mutant strain grown on solid agar than the parental strain. A FimW fusion protein was constructed using a pET-30a system. An electrophoretic mobility shift assay (EMSA) was performed to investigate if FimW protein interacted with the specific DNA fragments. It was performed using FimW and the DNA fragments containing the 200-300 base pairs of the upstream regions of the fimA, fimU, fimW, fimY, fimZ, and stm0551 and also of the other 10 major fimbrial subunit in S. Typhimurium. No FimW protein /DNA interaction was observed in the present study. Since the fimW mutant strain constitutively produced type 1 fimbriae, it was our intention to further explore if this mutant strain would be suitable to serve as a candidate strain for attenuating gene expression (AGE) vaccine development. Initial results suggested that the minimal inhibitory concentrations of polymxin B and erythromycin were decreased in the fimW mutant, indicating that the absence of fimW reduced the stability of the bacterial membrane. The suitability of using the fimW mutant strain as an attenuated Salmonella vaccine strain warrants further elucidation. In summary, FimW functions as a repressor to modulate type 1 fimbrial expression in S. Typhimurium. Currently, no interaction between FimW and fim-specific DNA, or other 10 fimbrial subunit promoter DNA was observed by EMSA. Deletion of fimW compromises the integrity of the bacterial membrane, making the fimW mutant a possible AGE vaccine candidate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:12:08Z (GMT). No. of bitstreams: 1 ntu-107-R05629014-1.pdf: 4294956 bytes, checksum: df74e76ebd87c33c3bacf6e80f40e0ca (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iv Abstract vi 目錄 viii 圖目錄 xi 表目錄 xiii 第一章 文獻回顧 1 第一節 沙門氏菌 1 第二節 沙門氏菌感染症狀 1 第三節 沙門氏菌致病機制 2 第四節 鼠傷寒沙門氏菌之線毛 2 第五節 鼠傷寒沙門氏菌第一型線毛 3 第六節 第一型線毛fimW基因 4 第七節 不同種線毛之間的交互作用 5 第八節 線毛基因調控其他功能基因 5 第九節 Attenuating gene expression (AGE) 疫苗的研發 6 第十節 實驗目的 7 第二章 材料與方法 8 第一節 菌株培養 8 第二節 酵母菌凝集試驗 8 第三節 fimW基因回復菌株構築 8 3-1 DNA分子選殖 8 3-1-1 嵌入基因fimW的製備 8 3-1-2 fimW基因與載體pACYC184的接合作用 10 3-1-3 質體轉型作用及質體保存 11 3-2 LB5010 fimW勝任細胞的製備與電穿孔法轉型質體 11 3-2-1 電穿孔勝任細胞LB5010 fimW的製備 11 3-2-2 電穿孔法轉型質體 (Electroporation) 12 第四節 細菌生長曲線的測定 12 第五節 細菌移動能力的測定 13 第六節 穿透式電子顯微鏡觀察 13 第七節 細菌總RNA (total RNA) 的萃取 13 7-1 細菌的製備 13 7-2 細菌的總RNA (total RNA) 萃取方法 14 第八節 反轉錄聚合酶連鎖反應 (reverse transcription-PCR, RT-PCR) 14 第九節 FimW蛋白與DNA的結合試驗 15 9-1 FimW重組蛋白的構築與純化 15 9-2 Target DNA的製備 16 9-3 電泳凝膠遷移實驗(Electrophoretic Mobility Shift Assay, EMSA) 16 第十節 外膜的通透性改變-藥物敏感性試驗 17 第十一節 滲透壓耐受性試驗 18 第十二節 對H2O2與膽鹽(bile salt) 的敏感性試驗 18 第三章 結果 19 第一節 fimW突變株基因定序 19 第二節 比較S. Typhimurium wild type菌株與fimW突變株的生長情形 19 第三節 比較S. Typhimurium wild type菌株與fimW突變株的移動能力 19 第四節 凝集試驗比較fimW基因剔除與否之菌株以及於不同培養環境下對於S. Typhimurium第一型線毛表現的影響 19 第五節 穿透式電子顯微鏡觀察fimW基因剔除與否之菌株以及於不同培養環境下對於S. Typhimurium第一型線毛表現的影響 20 第六節 以反轉錄聚合酶連鎖反應檢測fimW基因剔除與否之菌株以及於不同培養環境下對於S. Typhimurium第一型線毛相關基因表現的影響 20 第七節 電泳凝膠遷移試驗觀察FimW蛋白與第一型線毛相關基因之上游片段和其他線毛主結構基因上游片段的結合能力 21 第八節 外膜通透性藥物敏感性試驗檢測S. Typhimurium wild type和fimW突變株 22 第九節 滲透壓耐受性試驗觀察S. Typhimurium wild type和fimW突變株差異 22 第十節 H2O2與膽鹽的敏感性試驗觀察S. Typhimurium wild type和fimW突變株差異 22 第四章 討論 24 第一節 S. Typhimurium LB5010菌株剔除fimW基因後的影響探討 24 第二節 FimW蛋白的結合能力探討 26 第三節 fimW基因突變菌株對於細菌附屬物第一型線毛的過表現與AGE疫苗的研發探討 28 第五章 參考文獻 30 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電泳凝膠遷移實驗 | zh_TW |
| dc.subject | FimW | zh_TW |
| dc.subject | 第一型線毛 | zh_TW |
| dc.subject | 鼠傷寒沙門氏菌 | zh_TW |
| dc.subject | 減毒基因表達 | zh_TW |
| dc.subject | electrophoretic mobility shift assay | en |
| dc.subject | Salmonella Typhimurium | en |
| dc.subject | type 1 fimbriae | en |
| dc.subject | FimW | en |
| dc.subject | attenuating gene expression | en |
| dc.title | fimW 基因在鼠傷寒沙門氏菌第一型線毛調控系統所扮演的角色 | zh_TW |
| dc.title | Characterization of the role that fimW plays in the type 1 fimbrial regulatory system in Salmonella enterica serovar Typhimurium | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宣詩玲,王裕智 | |
| dc.subject.keyword | 鼠傷寒沙門氏菌,第一型線毛,FimW,電泳凝膠遷移實驗,減毒基因表達, | zh_TW |
| dc.subject.keyword | Salmonella Typhimurium,type 1 fimbriae,FimW,electrophoretic mobility shift assay,attenuating gene expression, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201801379 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-16 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
