Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69285
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖中明(Chung-Min Liao)
dc.contributor.authorHsing-Chieh Linen
dc.contributor.author林幸潔zh_TW
dc.date.accessioned2021-06-17T03:12:05Z-
dc.date.available2021-07-19
dc.date.copyright2018-07-19
dc.date.issued2018
dc.date.submitted2018-07-15
dc.identifier.citationAgusto FB. 2009. Optimal chemoprophylaxis and treatment control strategies of a tuberculosis transmission model. World Journal of Modelling and Simulation 5(3): 163–173.
Akhtar S, Mohammad HG. 2008. Seasonality in pulmonary tuberculosis among migrant workers entering Kuwait. BMC Infectious Diseases 8: 3.
Anderson RM, May RM. 1991. Infectious Disease of Human: Dynamic and Control. Oxford, UK: Oxford University Press.
Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR. 2012. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clinical Infectious Diseases 54(6): 784–791.
Ane-Anyangwe IN, Akenji TN, Mbacham WF, Penlap VN, Titanji VP. 2006. Seasonal variation and prevalence of tuberculosis among health seekers in the South Western Cameroon. East African Medical Journal 83: 588–595.
Arregui S, Iglesias MJ, Samper S, Marinova D, Martin C, Sanz J et al. 2018. Data-driven model for the assessment of Mycobacterium tuberculosis transmission in evolving demographic structures. Proceedings of the National Academy of Sciences: 201720606.
Atchison C, Lopman B, Edmunds WJ. 2010. Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales. Vaccine 28(18): 3118–3126.
Bell ML, Levy JK, Lin Z. 2007. The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occupational and Environmental Medicine.
Blower SM, Mclean AR, Porco TC, Small PM, Hopewell PC, Sanchez MA, et al. 1995. The intrinsic transmission dynamics of tuberculosis epidemics. Nature Medicine 1(8): 815–821.
Blower SM, Small PM, Hopewell PC. 1996. Control strategies for tuberculosis epidemics: new models for old problems. Science 273(5274): 497–500.
Bowong S, Tewa JJ. 2009. Mathematical analysis of a tuberculosis model with differential infectivity. Communications in Nonlinear Science and Numerical Simulation 14(11): 4010–4021.
Brunekreef B, Dockery DW, Krzyzanowski M. 1995. Epidemiologic studies on short-term effects of low levels of major ambient air pollution components. Environmental Health Perspectives 103(Suppl 2): 3–13.
Chuang KJ, Yan YH, Chiu SY, Cheng TJ. 2011. Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occupational and Environmental Medicine 68(1): 64–68.
Chuang KJ, Yan YH, Chiu SY, Cheng TJ. 2011. Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occupational and Environmental Medicine 68(1): 64–68.
Clark AJ. 1926. The reaction between acetyl choline and muscle cells. The Journal of Physiology 61: 530–546.
Cohen A, Mehta S. 2007. Pollution and tuberculosis: Outdoor sources. PLoS Med 4(3): e142.
Cole P, MacMahon, B. 1971. Attributable risk percent in case-control studies. British Journal of Preventive and Social Medicine 25(4): 242–244.
den Boon S, Verver S, Marais BJ, Enarson DA, Lombard CJ, Bateman ED, et al. 2007. Association between passive smoking and infection with Mycobacterium tuberculosis in children. Pediatrics 119(4): 734–739.
Dheda K, Barry Iii CE, Maarten G. 2015. Tuberculosis. The Lancet 387(10024): 1211–1226.
Dutta NK, Karakousis PC. 2014. Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiology and Molecular Biology Reviews 78(3): 343–371.
Dye C, Garnett GP, Sleeman K, Williams BG. 1998. Prospects for worldwide tuberculosis control under the WHO DOTS strategy. The Lancet 352(9144): 1886–1891.
Dye C, Williams BG. 2008. Eliminating human tuberculosis in the twenty-first century. Journal of the Royal Society Interface 5(23): 653–662.
Dye C, Williams BG. 2010. The population dynamics and control of tuberculosis. Science 328(5980): 856–861.
Elf JL, Eke O, Rakgokong M, Variava E, Baliram Y, Motlhaoleng K, et al. 2017. Indoor air pollution from secondhand tobacco smoke, solid fuels, and kerosene in homes with active tuberculosis disease in South Africa. BMC Research Notes 10(1): 591.
Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ. 2011. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. The Journal of Immunology 186(6): 3472–3483.
Fares A. 2011. Seasonality of tuberculosis. Journal of Global Infectious Diseases 3(1): 46–55.
Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2: 561–572.
Ge E, Fan M, Qiu H, Hu H, Tian L, Wang X, et al. 2017. Ambient sulfur dioxide levels associated with reduced risk of initial outpatient visits for tuberculosis: A population based time series analysis. Environmental Pollution 228: 408–415.
Goldstein E, Eagle MC, Hoeprich PD, Nettesheim P, Hammons AS. 1973. Effect of nitrogen dioxide on pulmonary bacterial defense mechanisms. Archives of Environmental Health: An International Journal 26(4): 202–204.
Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P. 2008. The Hill equation: a review of its capabilities in pharmacological modelling. Fundamental and Clinical Pharmacology 22(6): 633–648.
Hill AV. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. The Journal of Physiology 40: iv–vii.
Hiramatsu K, Saito Y, Sakakibara K, Azuma A, Kudoh S, Takizawa H, et al. 2005. The effects of inhalation of diesel exhaust on murine mycobacterial infection. Experimental Lung Research 31(4): 405–415.
Hsu YH, Chen CW, Sun HS, Jou R, Lee JJ, Su IJ. 2006. Association of NRAMP 1 gene polymorphism with susceptibility to tuberculosis in Taiwanese aboriginals. Journal of the Formosan Medical Association 105(5): 363–369.
Hwang SS, Kang S, Lee JY, Lee JS, Kim HJ, Han S K, et al. 2014. Impact of outdoor air pollution on the incidence of tuberculosis in the Seoul metropolitan area, South Korea. The Korean Journal of Internal Medicine 29: 183–190.
Iwai K, Mizuno S, Miyasaka Y, Mori T. 2005. Correlation between suspended particles in the environmental air and causes of disease among inhabitants: cross-sectional studies using the vital statistics and air pollution data in Japan. Environmental Research 99(1): 106–117.
Jafta N, Jeena PM, Barregard L, Naidoo RN. 2015. Childhood tuberculosis and exposure to indoor air pollution: a systematic review and meta-analysis. The International Journal of Tuberculosis and Lung Disease 19(5): 596–602.
Jassal MS, Bakman I, Jones B. 2013. Correlation of ambient pollution levels and heavily-trafficked roadway proximity on the prevalence of smear-positive tuberculosis. Public Health 127(3): 268–274.
Kao WP. 2014. A historical analysis of the tuberculosis problem among the indigenous people in Taiwan. Taiwan: A Radical Quarterly in Social Studies 97: 283–314.
Kaufmann SHE. 2001. How can immunology contribute to the control of tuberculosis? Nature Review Immunology 1: 20–30.
Kaufmann SHE. 2008. Tuberculosis: deadly combination. Nature 453: 295–296.
Keeling MJ, Rohani P. 2008. Modeling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton University Press.
Kermack WO, McKendrick AG. 1927. A contribution to the mathematical theory of epidemics. Proceeding of the Royal Society of London Series A 115: 700–721.
Knorst MM, Kienast K, Müller-Quernheim J, Ferlinz R. 1996. Effect of sulfur dioxide on cytokine production of human alveolar macrophages in vitro. Archives of Environmental Health: An International Journal 51(2): 150–156.
Koch R, Pinner BR, Pinner M. 1932. The aetiology of tuberculosis. New York: National Tuberculosis Association.
Kumar V, Singh A, Adhikary M, Daral S, Khokhar A, Singh S. 2014. Seasonality of tuberculosis in Delhi, India: a time series analysis. Tuberculosis Research and Treatment 2014: 514093.
Kuzmack AM, McGaughy RE. 1975. Quantitative risk assessment for community exposure to vinyl chloride. Washington, DC: United States Environmental Protection Agency.
Laaksonen M. 2010. Population Attributable Fraction (PAF) in epidemiologic follow-up studies. Doctoral dissertation, National Institute for Health and Welfare, Helsinki, Finland. Available at: http://urn.fi/urn:isbn:978-951-44-8149-9
Lai TC, Chiang CY, Wu CF, Yang SL, Liu DP, Chan CC, et al. 2016. Ambient air pollution and risk of tuberculosis: a cohort study. Occupational and Environmental Medicine 73(1): 56–61.
Lee JT, Kim H, Song H, Hong YC, Cho YS, Shin SY, et al. 2002. Air pollution and asthma among children in Seoul, Korea. Epidemiology 13(4): 481–484.
Lelieveld J and Pöschl U. 2017. Chemists can help to solve the air-pollution health crisis. Nature 551: 291–293.
Levin ML. 1953. The occurrence of lung cancer in man. Acta - Unio Internationalis Contra Cancrum 9: 531–541.
Li Z, Tighe RM, Feng F, Ledford JG, Hollingsworth JW. 2013. Genes of innate immunity and the biological response to inhaled ozone. Journal of Biochemical and Molecular Toxicology 27(1): 3–16.
Liao CM, Cheng YH, Lin YJ, Hsieh NH, Huang TL, Chio CP, Chen SC, Ling MP. 2012. A probabilistic transmission and population dynamic model to assess tuberculosis infection risk. Risk Analysis 32(8): 1420–1432.
Liao CM, Hsieh NH, Huang TL, Cheng YH, Chio CP, Chen SC, Ling MP. 2012. Assessing trends and predictors of tuberculosis in Taiwan. BMC Public Health 12: 29.
Lin HH, Ezzati M, Murray M. 2007. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Medicine 4(1): e20.
Lin HH, Murray M, Cohen T, Colijn C, Ezzati M. 2008. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. The Lancet 372(9648): 1473–1483.
Lin YJ, Liao CM. 2014. Seasonal dynamics of tuberculosis epidemics and implications for multidrug-resistant infection risk assessment. Epidemiology and Infection 142(2):358–370.
Lin YJ. 2014. Dynamic modeling and analysis of Mycobacterium tuberculosis infection risk and control measure efficacy. Unpublished doctoral dissertation, National Taiwan University, Taipei, Taiwan.
Lindsay RP, Shin SS, Garfein RS, Rusch ML, Novotny TE. 2014. The association between active and passive smoking and latent tuberculosis infection in adults and children in the united states: results from NHANES. PloS One 9(3): e93137.
Liu L, Zhao XQ, Zhou Y. 2010. A tuberculosis model with seasonality. Bulletin of Mathematical Biology 72(4): 931–952.
Lo WC, Shie RH, Chan CC, Lin HH. 2017. Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. Journal of the Formosan Medical Association 116(1): 32–40.
Lönnroth K, Castro KG, Chakaya JM, Chauhan LS, Floyd K, Glaziou P, et al. 2010. Tuberculosis control and elimination 2010–50: cure, care, and social development. The Lancet 375(9728): 1814–1829.
Margalit I, Block C, Mor Z. 2016. Seasonality of tuberculosis in Israel, 2001–2011. The International Journal of Tuberculosis and Lung Disease 20(12): 1588–1593.
McCullagh P, Nelder JA. 1989. Generalized Linear Models, 2nd Ed. London: Chapman & Hall.
Michaelis L, Menten ML. 1913. The kinetics of the inversion effect. Biochemische Zeitschrift 49: 333–369.
Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, et al. 2001. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infection and immunity 69(3): 1847–1855.
Murray CJ, Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S. 2014. Comparative quantification of health risks: conceptual framework and methodological issues. In: Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. pp. 1–38. Geneva, Switzerland: World Health Organization.
Murray CJ, Lopez AD. 1999 On the comparable quantification of health risks: lessons from the Global Burden of Disease Study. Epidemiology 10: 594–605.
Nagayama N, Ohmori M. 2006. Seasonality in various forms of tuberculosis. International Journal of Tuberculosis and Lung Disease 10:1117–1122.
Naranbat N, Nymadawa P, Schopfer K, Rieder HL. 2009. Seasonality of tuberculosis in an Eastern-Asian country with an extreme continental climate. The European Respiratory Journal 34: 921–925.
Narasimhan P, Wood J, MacIntyre CR, Mathai D. 2013. Risk factors for tuberculosis. Pulmonary Medicine 2013: 828939.
Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. 2016. Tuberculosis. Nature Reviews Disease Primers 2: 16076.
Parrinello CM, Crossa A, Harris TG. 2012. Seasonality of tuberculosis in New York City, 1990–2007. The International Journal of Tuberculosis and Lung Disease 16(1): 32–37.
Pedrazzoli D, Boccia D, Dodd PJ, Lönnroth K, Dowdy DW, Siroka A, et al. 2017. Modelling the social and structural determinants of tuberculosis: opportunities and challenges. The International Journal of Tuberculosis and Lung disease 21(9): 957–964.
Peng Z, Liu C, Xu B, Kan H, Wang W. 2017. Long-term exposure to ambient air pollution and mortality in a Chinese tuberculosis cohort. Science of the Total Environment 580: 1483–1488.
Perez-Padilla R, Perez-Guzman C, Baez-Saldana R, Torres-Cruz A. 2001. Cooking with biomass stoves and tuberculosis: a case control study. The International Journal of Tuberculosis and Lung Disease 5(5): 441–447.
Rajaei E, Hadadi M. Madadi M, Aghajani J, Ahmad MM, Farnia P, et al. 2018. Outdoor air pollution affects tuberculosis development based on geographical information system modeling. Biomedical and Biotechnology Research Journal 2(1): 39–45.
Ramakrishnan L. 2012. Revisiting the role of the granuloma in tuberculosis. Nature Reviews Immunology 12(5): 352–366.
Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR. 2004. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrobial Agents and Chemotherapy 48(10): 3670–3676.
Ríos M, García JM, Sánchez JA, Pérez D. 2000. A statistical analysis of the seasonality in pulmonary tuberculosis. European Journal of Epidemiology 16: 483–488.
Salomon JA, Lloyd-Smith JO, Getz WM, Resch S, Sánchez MS, Porco TC, et al. 2006. Prospects for advancing tuberculosis control efforts through novel therapies. PLoS Medicine 3(8): e273.
Sarkar S, Gonzalez Y, Carranza C, Torres M, Zhang J, Schwander S. 2017. Air Pollution Particulate Matter Alters Human Alveolar Macrophage Responses To Mycobacterium Tuberculosis. American Journal of Respiratory and Critical Care Medicine 195: A2073.
Sarkar S, Song Y, Sarkar S, Kipen HM, Laumbach RJ, Zhang J, et al. 2012. Suppression of the NF-κB pathway by diesel exhaust particles impairs human antimycobacterial immunity. The Journal of Immunology 188(6): 2778–2793.
Schildcrout JS, Sheppard L, Lumley T, Slaughter JC, Koenig JQ, Shapiro GG. 2006. Ambient air pollution and asthma exacerbations in children: an eight-city analysis. American Journal of Epidemiology 164(6): 505–517.
Schnermann J, Haberle DA, Davis JM, Thurau K. 1992. Tubuloglomerular feedback control of renal vascular resistance. In: Windhager EE ed, Handbook of renal physiology: section 8: renal physiology. pp. 1675–1705. Oxford, UK: Oxford University Press.
Serfling RE. 1963. Methods for current statistical analysis of excess pneumonia-influenza deaths. Public Health Reports 78(6): 494–506.
Sharma SK, Mohan A, Sharma A, Mitra DK. 2005. Miliary tuberculosis: new insights into an old disease. The Lancet Infectious Diseases 5(7): 415–430.
Shilova MV, Glumnaia TV. 2004. Influence of seasonal and environmental factors on the incidence of tuberculosis. Problemy Tuberkuleza i Boleznei Legkikh 2: 17–22.
Shilova MV, Glumnaia TV. 2004. Influence of seasonal and environmental factors on the incidence of tuberculosis. Problemy Tuberkuleza i Boleznei Legkikh 2: 17–22.
Smith GS, Schoenbach VJ, Richardson DB, Gammon MD. 2014. Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study. International Journal of Environmental Health Research 24(2): 103–112.
Smith GS, Van Den Eeden SK, Garcia C, Shan J, Baxter R, Herring AH, et al. 2016. Air pollution and pulmonary tuberculosis: A nested case–control study among members of a northern California health plan. Environmental Health Perspectives 124(6): 761–768.
Smith KR, Mehta S, Maeusezahl-Feuz M. 2004. Indoor air pollution from household use of solid fuels. In: Comparative quantification of health risks, global and regional burden of disease attributable to selected major risk factors. pp.1435–1494. Geneva, Switzerland: World Health Organization.
Smith KR. 2000. National burden of disease in India from indoor air pollution. Proceedings of the National Academy of Sciences 97(24): 13286–13293.
Stare J, Maucort-Boulch D. 2016. Odds ratio, hazard ratio and relative risk. Metodoloski Zvezki 13(1): 59–67.
Sud D, Bigbee C, Flynn JL, Kirschner DE. 2006. Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. The Journal of Immunology 176(7): 4296–4314.
Sugawara I, Yamada H, Kazumi Y, Doi N, Otomo K, Aoki T, et al. 1998. Induction of granulomas in interferon-γ gene-disrupted mice by avirulent but not by virulent strains of Mycobacterium tuberculosis. Journal of Medical Microbiology 47(10): 871–877.
Sumpter C, Chandramohan D. 2013. Systematic review and meta‐analysis of the associations between indoor air pollution and tuberculosis. Tropical Medicine and International Health 18(1): 101–108.
Sun J, Wang J, Wei Y, Li Y, Liu M. 2016. The haze nightmare following the economic boom in china: dilemma and tradeoffs. International Journal of Environmental Research and Public Health 13(4): 402.
Taiwan CDC (Centers for Disease Control, Department of Health, ROC). 2008. Taiwan Guidelines for TB Diagnosis & Treatment. Taipei, Taiwan: Taiwan CDC.
Taiwan CDC (Centers for Disease Control, Department of Health, ROC). 2007–2014. Taiwan Tuberculosis Control Report 2006–2013. Taipei, Taiwan: Taiwan CDC.
Taiwan CDC (Centers for Disease Control, Department of Health, ROC). 2017a. Taiwan Tuberculosis Control Report 2016. Taipei, Taiwan: Taiwan CDC.
Taiwan CDC (Centers for Disease Control, Department of Health, ROC). 2017b. Statistics of communicable diseases and surveillance report in Taiwan area. Taipei, Taiwan: Taiwan CDC.
Taiwan EPA (Environmental Protection Administration, Executive Yuan, ROC). 2013. Taiwan Emission Data System. Taipei, Taiwan: Taiwan EPA. Available at: https://teds.epa.gov.tw/.
Taiwan EPA (Environmental Protection Administration, Executive Yuan, ROC). 2016. Air Quality Annual Report of Taiwan 2016. Taipei, Taiwan: Taiwan EPA.
Taiwan EPA (Environmental Protection Administration, Executive Yuan, ROC). 2017a. Environment Resource Database. Taipei, Taiwan: Taiwan EPA. Available at: https://erdb.epa.gov.tw/.
Taiwan EPA (Environmental Protection Administration, Executive Yuan, ROC). 2017b. Air Quality Standards. Taipei, Taiwan: Taiwan EPA. Available at: https://taqm.epa.gov.tw/taqm/en/b0206.aspx.
Thomas GB, Fenters JD, Ehrlich R, Gardner DE. 1981. Effects of exposure to ozone on susceptibility to experimental tuberculosis. Toxicology Letters 9(1): 11–17.
Thorpe LE, Frieden TR, Laserson KF, Wells C, Khtri GR. 2004. Seasonality of tuberculosis in India: Is it real and what does it tell us? The Lancet 364: 1613–1614.
Tremblay GA. 2007. Historical statistics support a hypothesis linking tuberculosis and air pollution caused by coal. The International Journal of Tuberculosis and Lung Disease 11(7): 722–732.
USEPA (United States Environmental Protection Agency) 1984. Risk Assessment and Management: Framework for Decision Making. Washington, DC: United States Environmental Protection Agency.
Vander Hoorn S, EzzATI M, Rodgers A, Lopez AD, Murray CJ. 2004. Estimating attributable burden of disease from exposure and hazard data. In: Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. pp. 2129–2140. Geneva, Switzerland: World Health Organization.
Vynnycky E, Fine PEM. 1997. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiology and Infection 119(2): 183–201.
Wagner JG. 1968. Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man. Journal of Theoretical Biology 20: 173–201.
WHO (World Health Organization). 2005. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Geneva, Switzerland: WHO.
WHO (World Health Organization). 2014. WHO End TB Strategy. Geneva, Switzerland: WHO. Available at: http://www.who.int/tb/post2015_strategy/en/
WHO (World Health Organization). 2016. Ambient (outdoor) air quality and health. Geneva, Switzerland: WHO. Available at: http://www.who.int/mediacentre/factsheets/fs313/en/
WHO (World Health Organization). 2017a. Global tuberculosis report 2017. Geneva, Switzerland: WHO.
WHO (World Health Organization). 2017b. Metrics: Population Attributable Fraction (PAF). Geneva, Switzerland: WHO. Available at: http://www.who.int/healthinfo/global_burden_disease/metrics_paf/en/
WHO (World Health Organization). 2018. Tuberculosis. Geneva, Switzerland: WHO. Available at: http://www.who.int/mediacentre/factsheets/fs104/en/
Wigginton JE, Kirschner D. 2001. A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. The Journal of Immunology 166(3): 1951–1967.
Wubuli A, Li Y, Xue F, Yao X, Upur H, Wushouer Q. 2017. Seasonality of active tuberculosis notification from 2005 to 2014 in Xinjiang, China. PloS One 12(7): e0180226.
Xu X, Ding H, Wang X. 1995. Acute effects of total suspended particles and sulfur dioxides on preterm delivery: a community-based cohort study. Archives of Environmental Health 50: 407–415.
Yang CY, Chang CC, Chuang HY, Tsai SS, Wu TN, Ho CK. 2004. Relationship between air pollution and daily mortality in a subtropical city: Taipei, Taiwan. Environment international 30(4): 519–523.
Yang KL. 2002. Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmospheric Environment 36(21): 3403–3411.
Yeh KW, Chang CJ, Huang JL. 2011. The association of seasonal variations of asthma hospitalization with air pollution among children in Taiwan. Asian Pacific Journal of Allergy and Immunology 29(1): 34–41.
Yeh YP, Chang HJ, Yang J, Chang SH, Suo J, Chen THH. 2005. Incidence of tuberculosis in mountain areas and surrounding townships: dose–response relationship by geographic analysis. Annals of Epidemiology 15(7): 526–532.
You S, Tong YW, Neoh KG, Dai Y, Wang CH. 2016. On the association between outdoor PM2. 5 concentration and the seasonality of tuberculosis for Beijing and Hong Kong. Environmental Pollution 218: 1170–1179.
Zapata-Diomedi B, Barendregt JJ, Veerman JL. 2016. Population attributable fraction: names, types and issues with incorrect interpretation of relative risks. British Journal of Sports Medicine
Zhu S, Xia L, Wu J, Chen S, Chen F, Zeng F, et al. 2018. Ambient air pollutants are associated with newly diagnosed tuberculosis: a time-series study in Chengdu, China. Science of The Total Environment 631: 47–55.
Zohuri B. 2017. Probabilistic Risk Assessment. In: Thermal-Hydraulic Analysis of Nuclear Reactors. pp. 607–648. Springer, Cham.
丁偉諭。2003。臺中都會區酸性空氣污染物之季節性變化。國立中興大學環境工程學系碩士論文。
李智惠。2009。雲嘉南地區空氣品質與氣象因子之分析。國立嘉義大學史地學系研究所碩士論文。
魯臺營、陳宏仁。2017。屏東縣空氣污染防制計畫(104 至 108 年版)。屏東縣:環保局。
商俊盛。1997。氣象因子對北高都會區空氣品質變化影響之研究。國立臺灣大學大氣科學研究所碩士論文。87pp.
歐政寰。2017。戶外空氣污染與結核病之相關性:探討最佳的暴露評估方法。高雄醫學大學藥學系碩士論文。57pp.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69285-
dc.description.abstract結核病(Tuberculosis)是臺灣發生率及死亡率最高之法定傳染病,為嚴重之公共衛生議題。近年多數流行病學研究顯示空氣污染之暴露與結核病具正相關,潛在影響結核病之疾病負擔與傳輸。本論文目的為評估空氣污染暴露對結核病發生率貢獻之風險及其傳輸動態之影響。本研究依前人之世代研究資料設定嚴重與中等族群可歸因比率之反應情境以建構空氣污染物濃度與其之劑量反應關係,進而發展一機率風險架構以推估結核病發生率可歸因於暴露空氣污染之比率。此外,建構整合性空氣污染相關結核病族群傳輸動態模式,以研析空氣污染暴露之結核病傳輸動態。建構空氣污染濃度—結核病基本再生數(R0)之劑量反應關係,以擬定空氣污染物濃度之建議值以控制結核病傳播。結果指出,在嚴重情境下之50%超越風險,結核病發生率主要可歸因於一氧化碳(CO)與懸浮微粒(PM10)之暴露;而中等情境下,則以氮氧化物(NOX)與二氧化氮(NO2)為主。空氣污染暴露對結核病低發生率地區之臺北市其結核病發生率貢獻最高。整合性傳輸動態模式可有效預測近十年每月結核病發生率趨勢之能力。結果顯示臺北市、花蓮縣、臺東縣及屏東縣整體之基本再生數推估值皆大於1,表示若此四縣市空氣污染環境暴露會造成結核病持續流行。本研究推論空氣污染具潛在影響結核病之再活化機制。由控制結核病傳輸觀點所推估之空氣污染物濃度建議值:臺北市及屏東縣可分別控制二氧化硫(SO2)年平均濃度低於1.69與1.61 ppb。本論文以風險觀點評估空氣污染對結核病發生率之貢獻,提供整合性傳輸動態模式深入研析空氣污染影響結核病之傳輸機制,並指出主要影響結核病負擔與傳輸之空氣污染物及濃度建議值則有助於發展結核病防治措施。zh_TW
dc.description.abstractTuberculosis (TB), known as a serious public health issue, is a notifiable communicable disease with the highest incidence and mortality rate in Taiwan. Recent epidemiological studies demonstrated that exposure to air pollution was positively associated with TB development, leading to pose potentially impacts on TB disease burden and transmission. The objectives of this thesis were to assess the contribution risk of air pollution exposure to TB incidence rate and to evaluate the air pollution-associated TB transmission dynamics. This study developed a probabilistic risk framework to estimate the burden of TB incidence rates attributable to air pollution exposure by incorporating the dose-response relationship between air pollution and population attributable fraction (PAF) under severe and moderate scenarios based on the previous cohort study data. An integrated air pollution-associated TB population transmission dynamic model was constructed to elucidate how air pollution exposure influences the TB transmission dynamics. The dose-response relationship between air pollution concentrations and basic reproduction number (R0) was constructed to provide site-specific air pollution concentration recommendations for controlling TB transmission. Results indicated that, under severe PAF scenario at 50% risk probability, TB incidence was mainly attributable to carbon monoxide (CO) and particulate matter with aerodynamic diameter ≤ 10 μm (PM10) exposure among air pollutants; whereas under moderate scenario, the major air pollutants that contributed to TB incidence were nitrogen oxides (NOX) and nitrogen dioxide (NO2). Taipei City had the highest contribution of air pollution exposure to TB incidence. Model validation results indicated that the integrated transmission dynamic model well-described the trends of monthly TB incidence rates in recent 10 years. The estimated total TB R0s in Taipei City, Hualien, Taitung, and Pingtung Counties were greater than 1, implicating that the TB epidemic is highly likely to spread due partly to air pollution exposure. The results also implicated that air pollution exposure had potential impacts on TB reactivation mechanism. Furthermore, for controlling TB transmission, the proposed recommendations of annual average sulfur dioxide (SO2) concentrations should be lower than 1.69 and 1.61 in Taipei City and Pingtung County, respectively. This thesis assessed the contribution of air pollution to TB incidence based on a probabilistic point of view and provided an integrated air pollution-associated transmission dynamic model to understand the impact of air pollution on TB transmission mechanisms. The proposed air pollution recommendations are help for developing the TB control strategies.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:12:05Z (GMT). No. of bitstreams: 1
ntu-107-R05622006-1.pdf: 3785793 bytes, checksum: 16bb0cbc10df57b00f4f513a21bf75ee (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
中文摘要 VI
英文摘要 VII
目錄 IX
表目錄 XI
圖目錄 XII
符號說明 XIV
壹、 前言 1
貳、 動機與目的 3
2.1. 動機 3
2.2. 目的 4
參、 文獻回顧 5
3.1. 結核病 5
3.1.1. 疾病負擔 5
3.1.2. 疾病自然史 8
3.2. 空氣污染與結核病之關係 12
3.3. 族群可歸因比率 16
3.4. 風險評估 18
3.5. 數理模式 20
3.5.1. 結核病族群傳輸動態模式 20
3.5.2. 廣義線性迴歸模式 25
3.5.3. 希爾模式 28
肆、 材料與方法 31
4.1. 研究架構 31
4.2. 資料收集 33
4.2.1. 結核病新發案例數 33
4.2.2. 空氣污染物濃度 34
4.2.3. 空氣污染—族群可歸因比率之流行病學資料 35
4.3. 機率風險評估 38
4.4. 空氣污染相關之結核病傳輸動態模式 40
4.4.1. 空氣污染—結核病迴歸模式 40
4.4.2. 空氣污染—結核病傳輸動態模式 42
4.4.3. 空氣污染—基本再生數之劑量反應關係 46
4.4.4. 模式參數化、不確定性分析與驗證 47
伍、 結果與討論 49
5.1. 結核病新發案例分析 49
5.2. 空氣污染暴露分析 54
5.3. 空氣污染—族群可歸因比率風險貢獻 59
5.3.1. 空氣污染—族群可歸因比率劑量反應關係 59
5.3.2. 族群可歸因比率超越風險與發生率貢獻 63
5.4. 空氣污染—結核病傳輸動態 69
5.4.1. 空氣污染濃度—結核病新發案例數迴歸模式建立 69
5.4.2. 空氣污染相關結核病傳輸率推估 77
5.4.3. 基本再生數推估 80
5.5. 空氣污染濃度建議值 83
陸、 結論 87
柒、 未來研究建議 89
參考文獻 91
dc.language.isozh-TW
dc.subject傳輸zh_TW
dc.subject結核病zh_TW
dc.subject族群可歸因比率zh_TW
dc.subject風險評估zh_TW
dc.subject空氣污染zh_TW
dc.subject族群動態zh_TW
dc.subjectTuberculosisen
dc.subjectTransmissionen
dc.subjectRisk assessmenten
dc.subjectAir pollutionen
dc.subjectPopulation dynamicsen
dc.subjectPopulation attributable fractionen
dc.title臺灣地區空氣污染相關結核病之族群傳輸動態及其發生率貢獻評估zh_TW
dc.titlePopulation transmission dynamic modeling of air pollution-associated tuberculosis endemic in regions of Taiwan and their incidence rate contribution assessmenten
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳詩潔(Szu-Chieh Chen),陳韋妤(Wei-Yu Chen),林怡君(Yi-Jun Lin),楊迎緋(Ying-Fei Yang)
dc.subject.keyword結核病,空氣污染,風險評估,族群可歸因比率,族群動態,傳輸,zh_TW
dc.subject.keywordTuberculosis,Air pollution,Risk assessment,Population attributable fraction,Population dynamics,Transmission,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201801499
dc.rights.note有償授權
dc.date.accepted2018-07-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved