請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6927完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈川洲(Chuan-Chou Shen) | |
| dc.contributor.author | Li-Jung Huang | en |
| dc.contributor.author | 黃莉容 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:21:24Z | - |
| dc.date.available | 2013-12-01 | |
| dc.date.available | 2021-05-17T09:21:24Z | - |
| dc.date.copyright | 2012-09-03 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-29 | |
| dc.identifier.citation | An, Z. (2000), The history and variability of the East Asian paleomonsoon climate, Quaternary Science Reviews, 19(1–5), 171-187.
An, Z., et al. (2011), Glacial-Interglacial Indian Summer Monsoon Dynamics, Science, 333(6043), 719-723. Bender, M., T. Sowers, and L. Labeyrie (1994), The Dole Effect and its variations during the last 130,000 years as measured in the Vostok Ice Core, Global Biogeochem. Cycles, 8(3), 363-376. Chang, S.-P. (2012), Sea surface temperature record at the Southern Margin of the Western Pacific Warm Pool over the past 360 kyrs, National Taiwan University, Taipei. Cheng, H., R. L. Edwards, Y. Wang, X. Kong, Y. Ming, M. J. Kelly, X. Wang, C. D. Gallup, and W. Liu (2006), A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations, Geology, 34(3), 217-220. Cheng, H., R. L. Edwards, W. S. Broecker, G. H. Denton, X. Kong, Y. Wang, R. Zhang, and X. Wang (2009), Ice Age Terminations, Science, 326(5950), 248-252. Cheng, H., P. Z. Zhang, C. Spotl, R. L. Edwards, Y. J. Cai, D. Z. Zhang, W. C. Sang, M. Tan, and Z. S. An (2012), The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years, Geophys. Res. Lett., 39(1), L01705. Clemens, S. C., and W. L. Prell (2003), Data Report: Oxygen and Carbon Isotopes from Site 1146, Northern South China Sea, Scientific Results, 184, 1-8. Clement, A. C., R. Seager, and M. A. Cane (1999), Orbital Controls on the El Nino/Southern Oscillation and the Tropical Climate, Paleoceanography, 14(4), 441-456. CMA (2012), China Meteorological Administration meteorological records, http://www.cma.gov.cn/, edited. Dansgaard, W. (1964), Stable isotopes in precipitation, Tellus, 16(4), 436-468. Dole, M. (1936), The Relative Atomic Weight of Oxygen in Water and in Air A Discussion of the Atmospheric Distribution of the Oxygen Isotopes and of the Chemical Standard of Atomic Weights, The Journal of Chemical Physics, 4(4), 268-275. Dykoski, C. A., R. L. Edwards, H. Cheng, D. Yuan, Y. Cai, M. Zhang, Y. Lin, J. Qing, Z. An, and J. Revenaugh (2005), A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, EPSL, 233(1-2), 71-86. Fairchild, I. J., C. L. Smith, A. Baker, L. Fuller, C. Spotl, D. Mattey, F. McDermott, and E.I.M.F (2006), Modification and preservation of environmental signals in speleothems, Earth-Science Reviews, 75(1–4), 105-153. Faure, G. (1986), Principle of isotope Geology, 2 ed., Wiley. Faure, G. (1998), Principles of Applications of Geochemistry, 2 ed., Prentice Hall. Fleitmann, D., S. J. Burns, U. Neff, A. Mangini, and A. Matter (2003), Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems, Quaternary Research, 60(2), 223-232. Fleitmann, D., S. J. Burns, U. Neff, M. Mudelsee, A. Mangini, and A. Matter (2004), Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman, Quaternary Science Reviews, 23(7–8), 935-945. Gonfiantini, R., M.-A. Roche, J.-C. Olivry, J.-C. Fontes, and G. M. Zuppi (2001), The altitude effect on the isotopic composition of tropical rains, Chemical Geology, 181(1–4), 147-167. Guy, R. D., J. A. Berry, M. L. Fogel, and T. C. Hoering (1989), Differential fractionation of oxygen isotopes by cyanide-resistant and cyanide-sensitive respiration in plants, Planta, 177(4), 483-491. Hendy, C. H. (1971), The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators, Geochimica et Cosmochimica Acta, 35(8), 801-824. IRI (2008), Statistical Climate Prediction Tool: Probabilistic Composites Keyed to ENSO, http://iri.columbia.edu/climate/forecast//enso/index.html, edited, IRI. Kelly, M. J., R. L. Edwards, H. Cheng, D. X. Yuan, Y. J. Cai, M. L. Zhang, Y. S. Lin, and Z. S. An (2006), High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years BP from Dongge Cave, China and global correlation of events surrounding Termination II, PPP, 236(1-2), 20-38. Kim, S.-T., and J. R. O'Neil (1997), Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochimica et Cosmochimica Acta, 61(16), 3461-3475. Kroopnick, P., and H. Craig (1972), Atmospheric Oxygen: Isotopic Composition and Solubility Fractionation, Science, 175(4017), 54-55. Lea, D. W., D. K. Pak, and H. J. Spero (2000), Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations, Science, 289(5485), 1719-1724. Li, T.-Y., et al. (2011), Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China., Geochim. Cosmochim. Acta, 75, 4140-4156. Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20(1), PA1003. M.Baum, E., H. D. Knox, and T. R. Miller (2002), Nuclides and Isotopes : Chart of the Nuclides, 16 ed., Lockheed MartinKnolls. NOAA (2012), NOAA's El Nino Page, http://www.elnino.noaa.gov/index.html, edited. O'Neil, J. R., R. N. Clayton, and T. K. Mayeda (1969), Oxygen Isotope Fractionation in Divalent Metal Carbonates, The Journal of Chemical Physics, 51(12), 5547-5558. Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399(6735), 429-436. Rozanski, K., Aragu, aacute, A. s, L. s, and R. Gonfiantini (1993), Isotopic patterns in modern global precipitation, in Climate Change in Continental Isotopic Records, edited, pp. 1-36, AGU, Washington, DC. Shen, C.-C., et al. (2012), U-Th isotopic determinations in femtogram quantities and High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols, GCA (in review). Shen, C.-C., et al. (2008), Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals, Geochimica et Cosmochimica Acta, 72(17), 4201-4223. SINA (2010), Meteorological statistics of Mt. Jinfo, Chongqing, http://php.weather.sina.com.cn/whd.php?city=%BD%F0%B7%F0%C9%BD&m=1&dpc=1, edited, SINA Corporation. Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, J. Henry LeRoy Miller, and Z. Chen (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. Sowers, T., M. Bender, D. Raynaud, Y. S. Korotkevich, and J. Orchardo (1991), The δ18O of Atmospheric O2 from Air Inclusions in the Vostok Ice Core: Timing of CO2 and Ice Volume Changes During the Penultimate Deglaciation, Paleoceanography, 6(6), 679-696. Stauch, G., and F. Lehmkuhl (2010), Quaternary glaciations in the Verkhoyansk Mountains, Northeast Siberia, Quaternary Research, 74(1), 145-155. Sun, Y., S. C. Clemens, Z. An, and Z. Yu (2006), Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau, Quaternary Science Reviews, 25(1–2), 33-48. Wang, X., A. S. Auler, R. L. Edwards, H. Cheng, E. Ito, and M. Solheid (2006), Interhemispheric anti-phasing of rainfall during the last glacial period, Quaternary Science Reviews, 25(23-24), 3391-3403. Wang, Y., H. Cheng, R. L. Edwards, X. Kong, X. Shao, S. Chen, J. Wu, X. Jiang, X. Wang, and Z. An (2008), Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, Nature, 451(7182), 1090-1093. Wang, Y. J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C.-C. Shen, and J. A. Dorale (2001), A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China, Science, 294(5550), 2345-2348. Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292(5517), 686-693. Zhang, P., et al. (2008), A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record, Science, 322(5903), 940-942. Zhao, K., Y. Wang, R. L. Edwards, H. Cheng, and D. Liu (2010), High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition, EPSL, 298(1-2), 191-198. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6927 | - |
| dc.description.abstract | 透過分析中國洞穴石筍氧同位素記錄,前人研究已將過去38萬年來的亞洲季風強弱變化重建,並顯示在天文軌道週期的時間尺度上,亞洲季風強度主要跟隨北半球夏季日照量而改變。然而,在十萬年以前的中國洞穴石筍氧同位素記錄幾乎僅來自於湖北省的三寶洞,此單一的數據可能對於亞洲季風演化過程的解釋造成些許不確定。透過分析來自重慶市的羊口洞的五支鈾濃度介於2-16 ppm的高鈾濃度石筍,我們利用其氧同位素和定年紀錄,重建了12.4萬至20.6萬年前的亞洲季風變化。此研究結果支持三寶洞在此時間段的亞洲季風研究成果,包含深海氧同位素階層(MIS) 6.3、6.5與7.1的強季風時期,以及MIS 6.2、6.4與7.0的弱季風時期。中國洞穴石筍氧同位素變化的一致性說明過去亞洲季風興衰支配整個中國大陸地區,在天文軌道週期的時間尺度上主要跟隨北半球夏季日照量而改變,並且與全球大氣中氧氣的氧同位素變化有相關性存在。透過中國洞穴石筍氧同位素記錄與太平洋海表溫資料的對比,我們的研究提出亞洲季風的發展可能部分受控於沃克環流的強弱。前人研究顯示在MIS 6時期,中國洞穴石筍氧同位素記錄與黃土磁感率在季風興衰的分析上有所衝突,我們則認為此一現象是中國夏季季風系統與西北界線的遷移所造成。利用高精度的鈾釷定年技術,在95%信賴區間(2-sigma)內,我們所分析的羊口洞的石筍定年誤差可達到僅±450年,可讓我們更加確信在MIS 6-7時期亞洲季風事件的持續時間與確切的發生時間,進一步理解此時期亞洲季風的強弱變化與氣候上的影響因素。 | zh_TW |
| dc.description.abstract | Asian monsoon (AM) variation over past 380 kyrs has been reconstructed using stalagmite oxygen isotope records from caves in China, showing that AM intensity primarily follows Northern Hemisphere summer insolation on orbital timescales. However, those 100s-kyr records were built with stalagmites mainly from Sanbao Cave only, which could bring uncertainty in interpreting long-term AM evolution. Oxygen isotope records of stalagmites with high uranium levels of 2-16 ppm, collected from Yangkou Cave were used to reconstruct AM record from 124 to 206 kyr BP. Our results show that the Yangkou stalagmite-inferred AM variation superimposes on Sanbao record, supporting the strong AM intervals at marine isotope stage (MIS) 6.3, 6.5, and 7.1 and weak AM intervals at MIS 6.2, 6.4, and 7.0. This consistency confirms that the AM events are dominant in the entire mainland and primarily follow Northern Hemisphere summer insolation and relate to the atmospheric 'δ' (_^'18' )'O' variation on orbital timescales. Combined with Pacific thermal conditions, our study suggests that AM evolution could be partially controlled by the Walker Circulation. The conflict between stalagmite-inferred and loess-inferred Asian monsoon records during MIS 6 might be caused by the migration of Asian summer monsoon boundary. Advantages of high precision absolute U/Th dates with 2-sigma error as low as only ±450 yrs allow us to precisely determine the event durations and timings and to understand the AM variability and climatic forcings during MIS 6-7. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:21:24Z (GMT). No. of bitstreams: 1 ntu-101-R98224109-1.pdf: 6324514 bytes, checksum: 9ca9cc214c7fa74058f791aa5f546f1d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 序言與謝誌 I
Abstract III 摘要 IV Content V List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1 Asian monsoon 1 1.2 Cave stalagmite δ18O as AM proxy 3 1.2.1 Karstic system 3 1.2.2 U-Th dating 5 1.2.3 Oxygen isotope fractionation 6 1.2.4 Stalagmite oxygen isotope proxy for AM 8 1.2.5 Hendy Test 9 1.3 Previous studies and debates 9 Chapter 2 Regional settings and Methods 14 2.1 Studied site and research material 14 2.1.1 Location of Yangkou cave 14 2.1.2 Regional settings 15 2.1.3 Field work and sample collection 15 2.2 Experiment 16 2.2.1 Subsampling 16 2.2.2 Labware 18 2.2.3 Chemical procedure for stalagmite U-Th dating 19 2.3 Instrumentation 22 2.3.1 U-Th dating instrumentation 22 2.3.2 Oxygen isotope measurement 23 Chapter 3 Results 25 3.1 U-Th dating data 25 3.2 Oxygen isotope records 38 3.2.1 Hendy Test of Yangkou stalagmites 38 3.2.2 Oxygen isotope time series of Yangkou stalagmites 41 3.2.3 δ18O variation of Yangkou stalagmites 42 Chapter 4 Discussion 43 4.1 Comparison with other Chinese caves 43 4.2 AM forcings at different time windows 46 4.2.1 Glacial/interglacial period 46 4.2.2 Abnormal strong ASM at MIS 6.5 49 Chapter 5 Conclusions 57 References 58 Appendix I labware cleaning processes 64 Appendix II U-Th isotopic concentration data and dates 70 Appendix III Oxygen isotope records 74 | |
| dc.language.iso | en | |
| dc.title | 由中國重慶羊口洞石筍氧同位素記錄探討過去12萬至21萬年間亞洲季風強度的變化 | zh_TW |
| dc.title | Asian monsoon variability during 124-206 ka inferred from oxygen isotope records of stalagmites from Yangkou Cave, Chongqing, China | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳明德(Min-Te Chen),劉平妹(Ping-Mei Liew),米泓生(Horng-Sheng Mii) | |
| dc.subject.keyword | 亞洲季風,石筍,氧同位素,鈾釷定年, | zh_TW |
| dc.subject.keyword | Asian monsoon,Stalagmite,Oxygen isotope,U-Th Dating, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 6.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
