Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69279
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧麗珍(LEE-JENE TENG)
dc.contributor.authorKai-Hsun Tengen
dc.contributor.author鄧楷勳zh_TW
dc.date.accessioned2021-06-17T03:11:59Z-
dc.date.available2018-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-16
dc.identifier.citation1. Foster T. 1996. Staphylococcus. In Baron S (ed), Medical Microbiology, 4th ed, Galveston (TX).
2. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL. 2005. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751-762.
3. Cole AM, Tahk S, Oren A, Yoshioka D, Kim YH, Park A, Ganz T. 2001. Determinants of Staphylococcus aureus nasal carriage. Clin Diagn Lab Immunol 8:1064-1069.
4. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603-661.
5. Wenzel RP, Perl TM. 1995. The significance of nasal carriage of Staphylococcus aureus and the incidence of postoperative wound infection. J Hosp Infect 31:13-24.
6. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK, Active Bacterial Core surveillance MI. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763-1771.
7. Gurusamy KS, Koti R, Toon CD, Wilson P, Davidson BR. 2013. Antibiotic therapy for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in surgical wounds. Cochrane Database Syst Rev doi:10.1002/14651858.CD009726.pub2:CD009726.
8. Lyon BR, Skurray R. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88-134.
9. Society for Drug Research (Great Britain). Meeting (20th : 1986 : Pharmaceutical Society of Great Britain), Walker BC, Walker SR. 1988. Trends and changes in drug research and development : proceedings of the Society for Drug Research 20th Anniversary Meeting, held at the Pharmaceutical Society of Great Britain, London, 26 September 1986. Kluwer Academic Publishers, Dordrecht ; Boston.
10. Wright AJ. 1999. The penicillins. Mayo Clin Proc 74:290-307.
11. Song MD, Wachi M, Doi M, Ishino F, Matsuhashi M. 1987. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett 221:167-171.
12. Hartman BJ, Tomasz A. 1984. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513-516.
13. Pantosti A, Sanchini A, Monaco M. 2007. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol 2:323-334.
14. Hope R, Livermore DM, Brick G, Lillie M, Reynolds R, Surveillance BWPoR. 2008. Non-susceptibility trends among staphylococci from bacteraemias in the UK and Ireland, 2001-06. J Antimicrob Chemother 62 Suppl 2:ii65-74.
15. Sakoulas G, Moellering RC, Jr. 2008. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 46 Suppl 5:S360-367.
16. Valentini P, Parisi G, Monaco M, Crea F, Spanu T, Ranno O, Tronci M, Pantosti A. 2008. An uncommon presentation for a severe invasive infection due to methicillin-resistant Staphylococcus aureus clone USA300 in Italy: a case report. Ann Clin Microbiol Antimicrob 7:11.
17. Stefani S, Bongiorno D, Cafiso V, Campanile F, Crapis M, Cristini F, Sartor A, Scarparo C, Spina D, Viale P. 2009. Pathotype and susceptibility profile of a community-acquired methicillin-resistant Staphylococcus aureus strain responsible for a case of severe pneumonia. Diagn Microbiol Infect Dis 63:100-104.
18. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME, Etienne J. 2003. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978-984.
19. Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O'Boyle C, Danila RN, Lynfield R. 2003. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976-2984.
20. Fey PD, Said-Salim B, Rupp ME, Hinrichs SH, Boxrud DJ, Davis CC, Kreiswirth BN, Schlievert PM. 2003. Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:196-203.
21. Katayama Y, Ito T, Hiramatsu K. 2000. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549-1555.
22. Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, Hiramatsu K. 2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1323-1336.
23. International Working Group on the Classification of Staphylococcal Cassette Chromosome E. 2009. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 53:4961-4967.
24. Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, Jamklang M, Chavalit T, Song JH, Hiramatsu K. 2006. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 50:1001-1012.
25. Wu Z, Li F, Liu D, Xue H, Zhao X. 2015. Novel Type XII Staphylococcal Cassette Chromosome mec Harboring a New Cassette Chromosome Recombinase, CcrC2. Antimicrob Agents Chemother 59:7597-7601.
26. Katayama Y, Ito T, Hiramatsu K. 2001. Genetic organization of the chromosome region surrounding mecA in clinical staphylococcal strains: role of IS431-mediated mecI deletion in expression of resistance in mecA-carrying, low-level methicillin-resistant Staphylococcus haemolyticus. Antimicrob Agents Chemother 45:1955-1963.
27. Turlej A, Hryniewicz W, Empel J. 2011. Staphylococcal cassette chromosome mec (Sccmec) classification and typing methods: an overview. Pol J Microbiol 60:95-103.
28. Godtfredsen W, Roholt K, Tybring L. 1962. Fucidin: a new orally active antibiotic. Lancet 1:928-931.
29. Dobie D, Gray J. 2004. Fusidic acid resistance in Staphylococcus aureus. Arch Dis Child 89:74-77.
30. Biedenbach DJ, Rhomberg PR, Mendes RE, Jones RN. 2010. Spectrum of activity, mutation rates, synergistic interactions, and the effects of pH and serum proteins for fusidic acid (CEM-102). Diagn Microbiol Infect Dis 66:301-307.
31. Fernandes P. 2016. Fusidic Acid: A Bacterial Elongation Factor Inhibitor for the Oral Treatment of Acute and Chronic Staphylococcal Infections. Cold Spring Harb Perspect Med 6:a025437.
32. Farber BF, Yee YC, Karchmer AW. 1986. Interaction between rifampin and fusidic acid against methicillin-resistant coagulase-positive and -negative staphylococci. Antimicrob Agents Chemother 30:174-175.
33. Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. 2009. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694-699.
34. Burns DJ, Cundliffe E. 1973. Bacterial-protein synthesis. A novel system for studying antibiotic action in vivo. Eur J Biochem 37:570-574.
35. Agirrezabala X, Frank J. 2009. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 42:159-200.
36. Bodley JW, Zieve FJ, Lin L, Zieve ST. 1969. Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem Biophys Res Commun 37:437-443.
37. Savelsbergh A, Rodnina MV, Wintermeyer W. 2009. Distinct functions of elongation factor G in ribosome recycling and translocation. RNA 15:772-780.
38. Hirashima A, Kaji A. 1973. Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J Biol Chem 248:7580-7587.
39. Peske F, Rodnina MV, Wintermeyer W. 2005. Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell 18:403-412.
40. Besier S, Ludwig A, Brade V, Wichelhaus TA. 2003. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol 47:463-469.
41. Turnidge J, Collignon P. 1999. Resistance to fusidic acid. Int J Antimicrob Agents 12 Suppl 2:S35-44.
42. Nagaev I, Bjorkman J, Andersson DI, Hughes D. 2001. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol Microbiol 40:433-439.
43. Norstrom T, Lannergard J, Hughes D. 2007. Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus. Antimicrob Agents Chemother 51:4438-4446.
44. Lannergard J, Norstrom T, Hughes D. 2009. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob Agents Chemother 53:2059-2065.
45. Chen Y, Koripella RK, Sanyal S, Selmer M. 2010. Staphylococcus aureus elongation factor G--structure and analysis of a target for fusidic acid. FEBS J 277:3789-3803.
46. Laurberg M, Kristensen O, Martemyanov K, Gudkov AT, Nagaev I, Hughes D, Liljas A. 2000. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol 303:593-603.
47. Skold SE. 1982. Chemical cross-linking of elongation factor G to both subunits of the 70-S ribosomes from Escherichia coli. Eur J Biochem 127:225-229.
48. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905-920.
49. O'Neill AJ, Chopra I. 2006. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol Microbiol 59:664-676.
50. Lacey RW, Rosdahl VT. 1974. An unusual 'penicillinase plasmid' in staphylococcus aureus; evidence for its transfer under natural conditions. J Med Microbiol 7:1-9.
51. Malachowa N, DeLeo FR. 2010. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057-3071.
52. O'Brien FG, Price C, Grubb WB, Gustafson JE. 2002. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother 50:313-321.
53. Chen HJ, Hung WC, Lin YT, Tsai JC, Chiu HC, Hsueh PR, Teng LJ. 2015. A novel fusidic acid resistance determinant, fusF, in Staphylococcus cohnii. J Antimicrob Chemother 70:416-419.
54. O'Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I. 2007. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother 51:1737-1740.
55. McLaws F, Chopra I, O'Neill AJ. 2008. High prevalence of resistance to fusidic acid in clinical isolates of Staphylococcus epidermidis. J Antimicrob Chemother 61:1040-1043.
56. Yazdankhah SP, Asli AW, Sorum H, Oppegaard H, Sunde M. 2006. Fusidic acid resistance, mediated by fusB, in bovine coagulase-negative staphylococci. J Antimicrob Chemother 58:1254-1256.
57. Cox G, Thompson GS, Jenkins HT, Peske F, Savelsbergh A, Rodnina MV, Wintermeyer W, Homans SW, Edwards TA, O'Neill AJ. 2012. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proc Natl Acad Sci U S A 109:2102-2107.
58. Wang JL, Tang HJ, Hsieh PH, Chiu FY, Chen YH, Chang MC, Huang CT, Liu CP, Lau YJ, Hwang KP, Ko WC, Wang CT, Liu CY, Liu CL, Hsueh PR. 2012. Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 40:103-107.
59. Castanheira M, Watters AA, Mendes RE, Farrell DJ, Jones RN. 2010. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J Antimicrob Chemother 65:1353-1358.
60. Castanheira M, Watters AA, Bell JM, Turnidge JD, Jones RN. 2010. Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007-2008. Antimicrob Agents Chemother 54:3614-3617.
61. Udo EE, Al-Sweih N, Mokaddas E, Johny M, Dhar R, Gomaa HH, Al-Obaid I, Rotimi VO. 2006. Antibacterial resistance and their genetic location in MRSA isolated in Kuwait hospitals, 1994-2004. BMC Infect Dis 6:168.
62. Nakaminami H, Noguchi N, Ikeda M, Hasui M, Sato M, Yamamoto S, Yoshida T, Asano T, Senoue M, Sasatsu M. 2008. Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan. J Med Microbiol 57:1251-1258.
63. Thong KL, Junnie J, Liew FY, Yusof MY, Hanifah YA. 2009. Antibiograms and molecular subtypes of methicillin-resistant Staphylococcus aureus in local teaching hospital, Malaysia. J Microbiol Biotechnol 19:1265-1270.
64. Wang JT, Huang IW, Chang SC, Tan MC, Lai JF, Chen PY, Lauderdale TL. 2017. Increasing resistance to fusidic acid among clinical isolates of MRSA. J Antimicrob Chemother 72:616-618.
65. Farrell DJ, Castanheira M, Chopra I. 2011. Characterization of global patterns and the genetics of fusidic acid resistance. Clin Infect Dis 52 Suppl 7:S487-492.
66. O'Neill AJ, Larsen AR, Skov R, Henriksen AS, Chopra I. 2007. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J Clin Microbiol 45:1505-1510.
67. Lin YT, Tsai JC, Chen HJ, Hung WC, Hsueh PR, Teng LJ. 2014. A novel staphylococcal cassette chromosomal element, SCCfusC, carrying fusC and speG in fusidic acid-resistant methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 58:1224-1227.
68. Chen HJ, Hung WC, Tseng SP, Tsai JC, Hsueh PR, Teng LJ. 2010. Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 54:4985-4991.
69. Chen CM, Huang M, Chen HF, Ke SC, Li CR, Wang JH, Wu LT. 2011. Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC Microbiol 11:98.
70. Murray NE. 2000. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64:412-434.
71. Ender M, McCallum N, Adhikari R, Berger-Bachi B. 2004. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob Agents Chemother 48:2295-2297.
72. Waldron DE, Lindsay JA. 2006. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol 188:5578-5585.
73. Roberts GA, Houston PJ, White JH, Chen K, Stephanou AS, Cooper LP, Dryden DT, Lindsay JA. 2013. Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations. Nucleic Acids Res 41:7472-7484.
74. Cooper LP, Roberts GA, White JH, Luyten YA, Bower EKM, Morgan RD, Roberts RJ, Lindsay JA, Dryden DTF. 2017. DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus. Nucleic Acids Res 45:3395-3406.
75. Lindsay JA. 2014. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol 304:103-109.
76. Dempsey RM, Carroll D, Kong H, Higgins L, Keane CT, Coleman DC. 2005. Sau42I, a BcgI-like restriction-modification system encoded by the Staphylococcus aureus quadruple-converting phage Phi42. Microbiology 151:1301-1311.
77. Xu SY, Corvaglia AR, Chan SH, Zheng Y, Linder P. 2011. A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res 39:5597-5610.
78. Corvaglia AR, Francois P, Hernandez D, Perron K, Linder P, Schrenzel J. 2010. A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad Sci U S A 107:11954-11958.
79. Bignardi GE, Woodford N, Chapman A, Johnson AP, Speller DC. 1996. Detection of the mecA gene and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low-level methicillinresistance. J Antimicrob Chemother 37:53-63.
80. Brakstad OG, Aasbakk K, Maeland JA. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30:1654-1660.
81. Anonymous. 2017. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.1, 2017.
82. Brakstad OG, Tveten Y, Nato F, Fournier JM. 1993. Comparison of various methods and reagents for species identification of Staphylococcus aureus positive or negative for the mecA gene. APMIS 101:651-654.
83. Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O'Brien FG, Coombs GW, Pearman JW, Tenover FC, Kapi M, Tiensasitorn C, Ito T, Hiramatsu K. 2002. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40:4289-4294.
84. Ito T, Ma XX, Takeuchi F, Okuma K, Yuzawa H, Hiramatsu K. 2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 48:2637-2651.
85. Takano T, Higuchi W, Zaraket H, Otsuka T, Baranovich T, Enany S, Saito K, Isobe H, Dohmae S, Ozaki K, Takano M, Iwao Y, Shibuya M, Okubo T, Yabe S, Shi D, Reva I, Teng LJ, Yamamoto T. 2008. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 52:837-845.
86. Hanssen AM, Kjeldsen G, Sollid JU. 2004. Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci: evidence of horizontal gene transfer? Antimicrob Agents Chemother 48:285-296.
87. Kobayashi N, Urasawa S, Uehara N, Watanabe N. 1999. Distribution of insertion sequence-like element IS1272 and its position relative to methicillin resistance genes in clinically important Staphylococci. Antimicrob Agents Chemother 43:2780-2782.
88. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, Bost DA, Riehman M, Naidich S, Kreiswirth BN. 1999. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556-3563.
89. Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, Vogel U. 2003. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442-5448.
90. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008-1015.
91. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140-3145.
92. Murray BE, Singh KV, Heath JD, Sharma BR, Weinstock GM. 1990. Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol 28:2059-2063.
93. Institute CaLS. 2016. Performance Standards for Antimicrobial Susceptibility Testing; 26th informatiional supplement. Clinical and Laboratory Standards Institute.
94. Oliveira PH, Touchon M, Rocha EP. 2014. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 42:10618-10631.
95. Loenen WA, Dryden DT, Raleigh EA, Wilson GG. 2014. Type I restriction enzymes and their relatives. Nucleic Acids Res 42:20-44.
96. Lim KT, Teh CS, Yusof MY, Thong KL. 2014. Mutations in rpoB and fusA cause resistance to rifampicin and fusidic acid in methicillin-resistant Staphylococcus aureus strains from a tertiary hospital in Malaysia. Trans R Soc Trop Med Hyg 108:112-118.
97. Salsi E, Farah E, Dann J, Ermolenko DN. 2014. Following movement of domain IV of elongation factor G during ribosomal translocation. Proc Natl Acad Sci U S A 111:15060-15065.
98. Gordon NC, Price JR, Cole K, Everitt R, Morgan M, Finney J, Kearns AM, Pichon B, Young B, Wilson DJ, Llewelyn MJ, Paul J, Peto TE, Crook DW, Walker AS, Golubchik T. 2014. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol 52:1182-1191.
99. Cheng VC, Tai JW, Wong ZS, Chen JH, Pan KB, Hai Y, Ng WC, Chow DM, Yau MC, Chan JF, Wong SC, Tse H, Chan SS, Tsui KL, Chan FH, Ho PL, Yuen KY. 2013. Transmission of methicillin-resistant Staphylococcus aureus in the long term care facilities in Hong Kong. BMC Infect Dis 13:205.
100. Ho PL, Lo PY, Chow KH, Lau EH, Lai EL, Cheng VC, Kao RY. 2010. Vancomycin MIC creep in MRSA isolates from 1997 to 2008 in a healthcare region in Hong Kong. J Infect 60:140-145.
101. Du J, Chen C, Ding B, Tu J, Qin Z, Parsons C, Salgado C, Cai Q, Song Y, Bao Q, Zhang L, Pan J, Wang L, Yu F. 2011. Molecular characterization and antimicrobial susceptibility of nasal Staphylococcus aureus isolates from a Chinese medical college campus. PLoS One 6:e27328.
102. Kim T, Yi J, Hong KH, Park JS, Kim EC. 2011. Distribution of virulence genes in spa types of methicillin-resistant Staphylococcus aureus isolated from patients in intensive care units. Korean J Lab Med 31:30-36.
103. Lim KT, Hanifah YA, Yusof MY, Goering RV, Thong KL. 2012. Temporal changes in the genotypes of methicillin-resistant Staphylococcus aureus strains isolated from a tertiary Malaysian hospital based on MLST, spa, and mec-associated dru typing. Diagn Microbiol Infect Dis 74:106-112.
104. Eriksson J, Espinosa-Gongora C, Stamphoj I, Larsen AR, Guardabassi L. 2013. Carriage frequency, diversity and methicillin resistance of Staphylococcus aureus in Danish small ruminants. Vet Microbiol 163:110-115.
105. Leibler JH, Jordan JA, Brownstein K, Lander L, Price LB, Perry MJ. 2016. Staphylococcus aureus Nasal Carriage among Beefpacking Workers in a Midwestern United States Slaughterhouse. PLoS One 11:e0148789.
106. Gruteke P, Ho PL, Haenen A, Lo WU, Lin CH, de Neeling AJ. 2015. MRSA spa t1081, a highly transmissible strain endemic to Hong Kong, China, in the Netherlands. Emerg Infect Dis 21:1074-1076.
107. Cheng VC, Chan JF, Lau EH, Yam WC, Ho SK, Yau MC, Tse EY, Wong AC, Tai JW, Fan ST, Ho PL, Yuen KY. 2011. Studying the transmission dynamics of meticillin-resistant Staphylococcus aureus in Hong Kong using spa typing. J Hosp Infect 79:206-210.
108. Bilavsky E, Lerman Y, Rabinovich A, Salomon J, Lawrence C, Rossini A, Salvia A, Samso JV, Fierro J, Hochman M, Kazma M, Klein A, Schwaber MJ, Carmeli Y, team MWs. 2012. Carriage of methicillin-resistant Staphylococcus aureus on admission to European rehabilitation centres--a prospective study. Clin Microbiol Infect 18:E164-169.
109. Cockfield JD, Pathak S, Edgeworth JD, Lindsay JA. 2007. Rapid determination of hospital-acquired meticillin-resistant Staphylococcus aureus lineages. J Med Microbiol 56:614-619.
110. Zhang L, Thomas JC, Miragaia M, Bouchami O, Chaves F, d'Azevedo PA, Aanensen DM, de Lencastre H, Gray BM, Robinson DA. 2013. Multilocus sequence typing and further genetic characterization of the enigmatic pathogen, Staphylococcus hominis. PLoS One 8:e66496.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69279-
dc.description.abstract夫西地酸 (fusidic acid) 為固醇類抗生素,在臨床上主要用於治療金黃色葡萄球菌引起的皮膚感染和全身系統性感染。目前已知金黃色葡萄球菌可藉由使藥物作用標的基因突變或產生保護藥物作用標的之蛋白質來產生夫西地酸之抗藥性。近年來抗夫西地酸金黃色葡萄球菌日趨增多,根據臺大醫院統計資料顯示,具有夫西地酸抗藥之抗甲氧西林金黃色葡萄球菌 (methicillin-resistant Staphylococcus aureus, MRSA) 的比例逐年上升。為了持續觀察MRSA對夫西地酸抗藥情況,本實驗收集2011至2016年自台大醫院細菌室分離之185株夫西地酸抗藥之MRSA,偵測其夫西地酸抗藥基因。結果顯示,在185株夫西地酸抗藥之MRSA中,有34株(17.8%)帶有fusC基因,並無偵測到帶有fusB、fusD和fusF基因之菌株。而在隨機挑選未知機制的菌株中,以FusA產生L461K突變為主。然而,根據收集台大醫院2008至2010菌株之研究指出,約有59%夫西地酸抗藥之MRSA菌株帶有fusC基因。因此,進一步分析菌株分子流行病學以了解fusC基因比例的下降是否因菌株族群發生改變所造成。根據spa typing、multilocus sequencing及SCCmec分型之結果,發現在2011年,帶有fusC基因之夫西地酸抗藥MRSA分子分型仍與過去相同以ST239-SCCmec type III-t037為主,但在之後比例逐漸下降,至2012年便以ST45-SCCmec type VT-t1081為主,顯示菌株族群有所變化。進一步探討此34株帶有fusC基因之MRSA,其攜帶fusC基因之結構是否與先前研究結果以SCCfusC為主。結果顯示,此34株fusC基因夫西地酸抗藥之MRSA均帶有SCCfusC結構。為了瞭解造成SCCfusC轉移到不同菌株族群之原因,由於type I restriction modification (R-M)系統被報導與細菌調控外來基因插入細菌基因內之相關性,且HsdS相似度愈高不同菌株基因交換頻率愈高,因此比較不同菌株族群type I R-M系統的HsdR、HsdM、HsdS。根據胺基酸序列比對結果顯示,ST239-SCCmec type III-t037與ST45-SCCmec type VT-t1081的HsdR和HsdM氨基酸序列相似度大於99%,但兩者的HsdS氨基酸序列有巨大的差異。此結果表示,造成SCCfusC首先從ST239菌株傳遞至ST45菌株的原因可能與type I R-M系統關聯性較低。
根據以上結果,本實驗發現夫西地酸抗藥之MRSA中帶有fusC基因比例較往年下降,並且主要菌株族群由ST239-SCCmec type III-t037改變為ST45-SCCmec type VT-t1081,然而其攜帶fusC基因之結構卻仍為SCCfusC,推測此結構已不再只存在單一MRSA族群,有傳播至不同族群之情況,但其傳播之原因仍需進一步研究。
zh_TW
dc.description.abstractFusidic acid is a steroid antibiotic which has been used as antimicrobial agent to treat skin infection and systemic infections caused by Staphylococcus aureus. However, fusidic acid-resistant S. aureus has been reported worldwide. The fusidic acid resistance rate in National Taiwan University Hospital (NTUH) was approximately 3 to 6%, but the ratio is climbing up especially in methicillin-resistant S. aureus (MRSA) (from 10% to 20%) recently. In this study, a total of 185 fusidic acid-resistant MRSA isolates from 2011 to 2016 was collected. The MICs of fusidic acid ranged from 2 to ≥128 μg/ml. Detection of resistance determinants by PCR indicated that 34 carried fusC (34/185, 18%) but none contained fusB, fusD and fusF. The prevalence of fusC in this study was much lower than previous results (59% MRSA carried fusC). We randomly selected unknown resistant mechanism isolates to test fusA mutation, and then the results revealed that the L461K was the major mutation typ. To understand whether the genetic background of fusidic acid-resistant MRSA had changed, we examined SCCmec types, spa types, multilocus sequence types and mapped SCCfusC element. The molecular typing indicated the prevalent fusidic acid resistant lineage belonged to ST239-SCCmec type III-t037 in 2011, but ST45-SCCmec type VT-t1081 became the major fusidic acid resistant lineage after 2012. The SCCfusC PCR mapping also showed that the SCCfusC structure harbored in 34 fusC-carrying isolates was identical to that reported previously. To understand what lead the SCCfusC transferred to other lineage, we examined type I restriction modification (R-M) system. Type I R-M system has been reported that it is correlated with genes uptake and the exchange of DNA is in high frequency in the isolates with same hsdS. We compared the hsdR, hsdM and hsdS of type I R-M system, fusC isolates and non-fusC isolates showed >99% similarity in the amino acids sequence of HsdR and HsdM. However, the amino acids sequence of HsdS between fusC isolates and non-fusC isolates showed high variety. This indicated that type I R-M system was low relationship with the transfer of SCCfusC from ST239 isolates to ST45 isolates. In conclusion, the prevalence of fusC in MRSA had been recently decreased and the dominant lineage of isolates was changed from ST239-SCCmec type III-t037 to ST45-SCCmec type VT -t1081 among fusC-carrying MRSA. Moreover, SCCfusC is still the main structure that responsible for carrying the fusC gene, so it can be suggested that SCCfusC was transferred to other lineages, but the reason why SCCfusC was transferred to other lineages still need to be investigated.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:11:59Z (GMT). No. of bitstreams: 1
ntu-107-R05424031-1.pdf: 4043015 bytes, checksum: bfdfd5fe49c457868fe68756db7822ed (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 ................................................................................................................................................ I
中文摘要 ....................................................................................................................................... II
Abstract ........................................................................................................................................ IV
Chapter 1 Introduction ........................................................................................................... 1
1.1 Staphylococci .............................................................................................................. 1
1.1.1 Staphylococcus aureus ............................................................................................ 1
1.1.2 Methicillin-resistant Staphylococcus aureus (MRSA). ........................................... 1
1.1.3 Staphylococcal cassette chromosome mec (SCCmec). ............................................ 3
1.2 Fusidic acid ................................................................................................................. 4
1.2.1 Resistance mechanism of fusidic acid. .................................................................... 5
1.2.2 Epidemiology of fusidic acid-resistant S. aureus. ................................................... 7 1.3 Restriction modification system................................................................................ 8
Chapter 2 Materials and Methods ....................................................................................... 10
2.1 Bacterial strains ....................................................................................................... 10
2.2 Antimicrobial susceptibility testing ........................................................................ 10
2.3 DNA extraction ........................................................................................................ 11
2.4 Polymerase chain reaction (PCR)........................................................................... 12
2.4.1 Confirming MRSA isolates by detecting nuc and mecA genes. ............................ 13
2.4.2 SCCmec typing. ..................................................................................................... 14
2.4.3 spa typing. ............................................................................................................. 16
2.4.4 Detection of fusidic acid resistance genes. ............................................................ 17
2.4.5 Detection of SCCfusC from fusC-carrying isolates. .............................................. 19
2.4.6 Multilocus sequence typing ................................................................................... 20
2.4.7 Detection of hsdR between fusC-carrying and non-fusC carrying isolates ............. 21
2.4.8 Detection of hsdMS between fusC-carrying and non-fusC carrying isolates .......... 22
2.5 Pulsed-field gel electrophoresis ............................................................................... 23
Chapter 3 Results ................................................................................................................... 25
3.1 Fusidic acid susceptibility. ...................................................................................... 25
3.2 Fusidic acid resistance determinants among MRSA ............................................ 26
3.2.1 Detection of fusA gene point mutations ..................................................................... 26
3.2.2 Prevalence of fusB, fusC, fusD and fusF .................................................................... 26
3.3 Detection of speG gene ............................................................................................. 27
3.4 Prevalence of SCCfusC structure among the fusC-carrying isolates by PCR mapping. ................................................................................................................................. 27
3.5 Pulsed-field gel electrophoresis ............................................................................... 27
3.6 spa typing and SCCmec typing. .............................................................................. 28
3.7 Multilocus sequence typing ..................................................................................... 29
3.8 Comparison of the Type I restriction modification system between fusC-carrying isolates and non-fusC t037 isolates ....................................................................... 29
Chapter 4 Discussion ............................................................................................................. 31
Figures ......................................................................................................................................... 36
Tables .......................................................................................................................................... 45
References ................................................................................................................................... 56
dc.language.isoen
dc.subject抗甲氧西林金黃色葡萄球菌zh_TW
dc.subject夫西地酸zh_TW
dc.subjectfusCzh_TW
dc.subjectmethicillin-resistant Staphylococcus aureus (MRSA)en
dc.subjectfusCen
dc.subjectfusidic aciden
dc.title抗甲氧西林金黃色葡萄球菌
夫西地酸抗藥基因fusC之減少趨勢
zh_TW
dc.titleDecreasing prevalence of fusC in methicillin-resistant Staphylococcus aureusen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾嵩斌(Sung-Pin Tseng),廖淑貞(SHWU-JEN LIAW)
dc.subject.keyword抗甲氧西林金黃色葡萄球菌,夫西地酸,fusC,zh_TW
dc.subject.keywordmethicillin-resistant Staphylococcus aureus (MRSA),fusidic acid,fusC,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201801542
dc.rights.note有償授權
dc.date.accepted2018-07-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved