請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69239完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴勇成(Yung-Cheng Lai) | |
| dc.contributor.author | Ying-Chun Lin | en |
| dc.contributor.author | 林映均 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:11:10Z | - |
| dc.date.available | 2025-07-31 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | Ahac, M. and Lakušić, S. (2017). Track Gauge Degradation Modelling on Small Urban Rail Networks: Zagreb Tram System Case Study. Urban Transport Systems. Alemazkoor, N., Ruppert, C. J. and Meidani, H. (2015). Track Geometry Analytics. In RAS Problem Solving Competition Report. Mumbai. An, R., Sun, Q., Wang, F., Bai, W., Zhu, X. and Liu, R. (2018). Improved Railway Track Geometry Degradation Modeling for Tamping Cycle Prediction. Journal of Transportation Engineering, Part A: Systems. 144 (7). Andrews, J., Prescott, D. and Rozières, F. (2014). A Stochastic Model for Railway Track Asset Management. Reliability Engineering and System Safety. 130, 76-84. Bai, L., Liu, R., Sun, Q., Wang, F. and Xu, P. (2015), Markov-based model for the prediction of railway track irregularities. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 229 (2), 150–159. Bing, A.J. and Gross, A. (1983). Development of Railroad Track Degradation Models. Transportation Research Record. 939, 27-31. Elkhoury, N., Hitihamillage, L. Moridpour, S. and Robert, D. (2018a), Degradation Prediction of Rail Tracks: A Review of the Existing Literature. The Open Transportation Journal. 12, 88-104. Elkhoury, N. (2018b), Analysis and Prediction of Tram Track Degradation. Master of science thesis, College of Science, Engineering and Health, RMIT University, 2018. Falamarzi, A., Moridpour, S., Nazem, M. and Hesami, R. (2018a). Integration of Genetic Algorithm and Support Vector Machine to Predict Rail Track Degradation. Falamarzi, A., Moridpour, S., Nazem, M. and Hesam, R. (2018b). Rail Degradation Prediction Models for Tram System: Melbourne Case Study. Journal of Advanced Transportation. 2018 Falamarzi, A., Moridpour, S. and Nazem, M. (2019). A review of rail track degradation prediction models. Australian Journal of Civil Engineering. Falamarzi, A. (2020) Develo.pment of a new approach for predicting tram track degradation based on passenger ride/comfort data, Doctor of Philosophy Thesis. College of Science, Engineering and Health, RMIT University, 2020. Guler, H. (2013). Decision Support System for Railway Track Maintenance and Renewal Management. Journal of Computing in Civil Engineering. 27 (3), 292-306. Hu, C. and Liu, X. (2016). Modeling Track Geometry Degradation Using Support Vector Machine Technique. Proceedings of the 2016 Joint Rail Conference, Columbia, SC, USA. Jeong, M.C., Kim, J.C., Lee, J.H. Kang, Y.S. and Kong, J.S. (2010), Evaluation of the Railroad Track Life Cycle Based on the Metro Rail Wear Data Regression Analysis. Journal of the Korea institute for structural maintenance and inspection. 2010. Jeong, M.C., Lee, S.J., Cha, K., Zi G. and Kong, S.K. (2019), Probabilistic model forecasting for rail wear in seoul metro based on bayesian theory. Engineering Failure Analysis. 96, 202-210. Jovanović, S., Guler, H. and Čoko, B. (2015). Track degradation analysis in the scope of railway infrastructure maintenance management systems. Gradevinar 67 (3), 247-257. Karimpour, M., Elkhoury, N., Hitihamillage, L., Moridpour, S. and Hesami, R. (2017a) Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System. International Journal of Transport and Vehicle Engineering. 11 (9), 1257-1261. Karimpour, M., Hitihamillage, L., Elkhoury, N., Moridpour, S. and Hesami, R. (2017b). Nonlinear Estimation Model for Rail Track Deterioration. World Academy of Science, Engineering and Technology International Journal of Transport and Vehicle Engineering 11 (9), 1591-1595. Karimpour, M., Hitihamillage, L., Elkhoury, N., Moridpour, S. and Hesami, R. (2018) Fuzzy Approach in Rail Track Degradation Prediction. Journal of Advanced Transportation. 2018. Kawaguchi, A., Miwa, M. and Terada, M. (2005). Actual Data Analysis of Alignment Irregularity Growth and its Prediction Mode. Quarterly Report of RTRI. 46 (4), 262-268. Kumar, S. (2006). A Study of the Rail Degradation Process to Predict Rail Breaks. Licentiate Thesis, Division of Operation and Maintenance Engineering, Luleå University of Technology, Luleå, Sweden, 2006. Kumar, S., Espling, U. and Kumar, U. (2008). Holistic procedure for rail maintenance in Sweden. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 222 (4) 331-344. Lewis, C.D. (1982). Control of body segment differentiation in drosophila by the bithorax gene complex. Embryonic development. 1, 269-288. Lovett, A.H., Barkan, C.P.L. and Dick, C.T. (2013). An Integrated Model for the Evaluation and Planning of Railroad Track Maintenance. Urbana, 51,. Lyngby, N., Hokstad, P. and Vatn, J. (2008). RAMS management of railway tracks. Handbook of performability engineering, 1123-1145. Moridpour, S., Setunge, S. and Mazloumi, E. (2014). Modeling Degradation of Tracks for Maintenance Planning on a Tram Line. Journal of Traffic and Logistics Engineering. 2 (2), 86-91. Podofillini, L. Zio, E. and Vatn, J. (2006). Risk-informed optimisation of railway tracks inspection and maintenance procedures. Reliability Engineering and System Safety. 91 (1), 20-35. Rashidi, M., Samali, B. and Sharafi, P. (2016). A New Model for Bridge Management: Part B: Decision Support System for Remediation Planning. Australian Journal of Civil Enging 14 (1), 46–53. Sadeghi, J. and Askarinejad, H. (2008). Development of improved railway track degradation models. Structure and Infrastructure Engineering, 6 (6), 675-688. Sato, Y. (1995). Japanese Studies on Deterioration of Ballasted Track. Vehicle System Dynamics. 24, 197–208. Shafahi, Y., Masoudi, P. and Hakhamaneshi, R. (2018). Track Degradation Prediction Models, Using Markov Chain, Artificial Neural and Neuro-Fuzzy Network. 8th World Congress on Railway Research, Seoul, Korea. Soleimanmeigouni, I., Ahmadi, A. and Kumar, U. (2016). Track geometry degradation and maintenance modelling: A review. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 232(1), 73–102. Tzanakakis, K. (2013). The Railway Track and Its Long Term Behavior, Springer Tracts on Transportation and Traffic, New York. Westgeest, F.P., Dekker, R. and Fischer, R.H. (2012). Predicting rail geometry deterioration by regression models. Advances in Safety, Reliability and Risk Management ESREL 2012. 146, 926–933. Zhang, Y.J., Murray, M. H. and Ferreira, L. (2001). Modelling rail track performance: an integrated approach. Transport Journal. 14(4) 187-194. 陳順宇 (民85),「迴歸分析」,華泰書局。 張斐章、張麗秋 (民104),「類神經網路導論:原理與應用(第二版)」,滄海書局。 葉怡成,(民91) ,「應用類神經網路」,儒林書局。 馮正民、邱裕鈞 (民93),「研究分析方法」,建都文化。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69239 | - |
| dc.description.abstract | 鋼軌是軌道運輸中重要的資產,因隨著使用量及環境等因素受到磨耗,須適時地維護與更換。然而,鋼軌的更換也會涉及軌道維護計畫與鋼軌採購計畫,若能準確地預測鋼軌的磨耗,將可提升相關計畫的執行效率與成果。據文獻回顧,多數研究著重於整體軌道的劣化,少部分研究雖有探討鋼軌軌距的磨耗,然而決定鋼軌更換的指標並非視軌距的變化而決定。有鑑於此,本研究提出三階段的模式方法來探討與發展鋼軌踏面與側向磨耗預測模式,逐步提升其預測之準確與模式使用的便利性,並應用於都會捷運系統。首先由依同性質因素所分類的區段著手分析,以時間為變數,初步了解單一線段中踏面磨耗與側向磨耗的特性與趨勢,可提供現有營運路線鋼軌磨耗預測之資訊;第二階段則將所有區段依線段種類分類,藉由多元迴歸分析及類神經網路,發展出各線段種類的鋼軌磨耗預測模式,可提供未來路線鋼軌磨耗的參考依據;最後,第三階段發展全線段通用模式,彙整所有可能影響因素探究其對於鋼軌磨耗的變化。在第一階段模式中,踏面磨耗的模式有很好的預測能力,側向磨耗方面的預測不如預期,但透過換軌資料可以得知,僅少數區段為側向磨耗先達上限,因此第一階段的模式應能有效地提供既有營運路線鋼軌磨耗的預測。第二、三階段發展的模式經驗證後可得知,踏面磨耗之模式皆屬合理的預測範圍內,側向磨耗的預測相對而言不如踏面磨耗來的準確,由於第二、三階段的目的在於提供未來路線的規劃參考,透過第二、三階段模式中的影響因素可推估尚未營運路線的長期鋼軌需求。本研究之成果可供現有捷運路線之鋼軌維護與採購計畫參考,亦可供新建或規劃路線作為規劃參考與推估工具。 | zh_TW |
| dc.description.abstract | Rail is an important asset in rail transportation. It may deteriorate with impact of many different factors, such as traffic volume, environmental conditions, etc. The maintenance and renewal (M R) tasks are essential for the safety issue. In addition, the replacement of rail also affects rail maintenance schedules and rail procurement program. Therefore, once the rail degradation is accurately predicted, the schedules will be implemented more efficiently. In literature, most studies are focused on overall track degradation. Although part of research discusses the variation of gauge, gauge is not the only index to determine the replacement of rail. Consequently, this research proposes a three-stage method that yields a rail degradation model for wear of rail heads and width. In the first stage, rail is categorized as the section with the same property. Trend with time for each section is analyzed and compared to the prediction by operators. In the second stage, the sections are categorized to tangent, spiral and circular curves. The wear prediction models of multiple regression and artificial neural networks (ANNs) are developed for each category. In the third stage, a model is developed to identify impact factors affecting wear different segment categorizes. The results verify and show great performance for wear prediction of rail head. The models proposed by this study can be further applied as reference for M R plan of rail or rail procurement program. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:11:10Z (GMT). No. of bitstreams: 1 U0001-1808202016384100.pdf: 1943241 bytes, checksum: 87296cd39bf998798754a3b65845954a (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i ABSTRACT ii 目錄 iii 圖目錄 v 表目錄 vi 第一章、緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究範圍 2 1.4 研究方法 2 1.5 論文架構 3 第二章、文獻回顧 5 2.1 鋼軌磨耗預測之實務作法 5 2.2 鋼軌劣化模式分類 7 2.2.1 力學模式 7 2.2.2 統計模型 8 2.2.3 力學經驗模式 11 2.2.4 人工智慧 12 2.3 小結 14 第三章、研究方法 18 3.1 第一階段模式:同性質區段趨勢分析 18 3.1.1資料背景說明 18 3.1.2資料分段程序 18 3.1.3一般線性迴歸分析 20 3.2 第二階段模式:特定線段種類模式 21 3.2.1資料分段方式與資料處理 21 3.2.2多元迴歸分析 24 3.2.3 類神經網路:倒傳遞網路模式 26 3.3 第三階段模式:全線段通用模式 28 3.4 模式評估與驗證 29 3.4.1模型評估 30 3.4.2模型驗證 30 3.5 小結 31 第四章、案例分析與模式驗證 32 4.1 第一階段特定同性質區段磨耗趨勢分析 32 4.2 第二階段模式成果 38 4.2.1多元迴歸分析 38 4.2.2類神經網路分析 50 4.3 第三階段模式成果 53 4.4 迴歸分析與類神經網路分析之模型驗證與比較 62 4.5 綜合討論 63 4.6 小結 64 第五章、結論與建議 65 5.1結論 65 5.2建議 66 參考文獻 67 附錄A 第一階段各線段月磨耗率與R2 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磨耗預測 | zh_TW |
| dc.subject | 鋼軌 | zh_TW |
| dc.subject | 捷運系統 | zh_TW |
| dc.subject | 迴歸分析 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | Rail | en |
| dc.subject | Artificial Neural Network | en |
| dc.subject | Regression Analysis | en |
| dc.subject | Metro System | en |
| dc.subject | Wear Prediction | en |
| dc.title | 捷運系統鋼軌磨耗預測模式開發 | zh_TW |
| dc.title | Developing Rail Degradation Model for Metro System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許聿廷(Yu-ting Hsu),張家銘(Chia-Ming Chang),范振威(Chen-Wei Fan) | |
| dc.subject.keyword | 鋼軌,磨耗預測,捷運系統,迴歸分析,類神經網路, | zh_TW |
| dc.subject.keyword | Rail,Wear Prediction,Metro System,Regression Analysis,Artificial Neural Network, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU202003997 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202016384100.pdf 未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
