請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69218完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊杉 | |
| dc.contributor.author | Heng Lee | en |
| dc.contributor.author | 李珩 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:10:47Z | - |
| dc.date.available | 2018-07-19 | |
| dc.date.copyright | 2018-07-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-17 | |
| dc.identifier.citation | Ashby, M. (2016). Materials selection in mechanical design (5th edition. ed.). Cambridge, MA: Elsevier.
Barthelat, F. (2010). Nacre from mollusk shells: a model for high-performance structural materials. Bioinspir Biomim, 5(3), 035001. doi:10.1088/1748-3182/5/3/035001 Barthelat, F., & Mirkhalaf, M. (2013). The quest for stiff, strong and tough hybrid materials: an exhaustive exploration. J R Soc Interface, 10(89), 20130711. doi:10.1098/rsif.2013.0711 Begley, M. R., Philips, N. R., Compton, B. G., Wilbrink, D. V., Ritchie, R. O., & Utz, M. (2012). Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites. Journal of the Mechanics and Physics of Solids, 60(8), 1545-1560. doi:10.1016/j.jmps.2012.03.002 Bekah, S., Rabiei, R., & Barthelat, F. (2012). The Micromechanics of Biological and Biomimetic Staggered Composites. Journal of Bionic Engineering, 9(4), 446-456. doi:10.1016/s1672-6529(11)60145-5 Bouville, F., Maire, E., Meille, S., Van de Moortele, B., Stevenson, A. J., & Deville, S. (2014). Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater, 13(5), 508-514. doi:10.1038/nmat3915 Chen, Y. Y., Jia, Z., & Wang, L. F. (2016). Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties. Composite Structures, 152, 395-402. doi:10.1016/j.compstruct.2016.05.048 Evans, A. G., Suo, Z., Wang, R. Z., Aksay, I. A., He, M. Y., & Hutchinson, J. W. (2011). Model for the robust mechanical behavior of nacre. Journal of Materials Research, 16(09), 2475-2484. doi:10.1557/jmr.2001.0339 Fratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in Materials Science, 52(8), 1263-1334. doi:10.1016/j.pmatsci.2007.06.001 Gao, H., Ji, B., Jager, I. L., Arzt, E., & Fratzl, P. (2003). Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci U S A, 100(10), 5597-5600. doi:10.1073/pnas.0631609100 Gao, H. J. (2006). Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. International Journal of Fracture, 138(1-4), 101-137. doi:10.1007/s10704-006-7156-4 Garcia, A. P., Sen, D., & Buehler, M. J. (2011). Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 42a(13), 3889-3897. doi:10.1007/s11661-010-0477-y Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids Structure and Properties Second Edition. doi:10.1017/cbo9781139878326 Huang, T.-H., Chen, C.-S., & Chang, S.-W. (2018). Microcrack patterns control the mechanical strength in the biocomposites. Materials & Design, 140, 505-515. doi:10.1016/j.matdes.2017.12.015 Jäger, I., & Fratzl, P. (2000). Mineralized Collagen Fibrils: A Mechanical Model with a Staggered Arrangement of Mineral Particles. Biophysical Journal, 79(4), 1737-1746. doi:10.1016/s0006-3495(00)76426-5 Kroger, N. (2007). Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr Opin Chem Biol, 11(6), 662-669. doi:10.1016/j.cbpa.2007.10.009 Li, J., Meng, S., Tian, X., Song, F., & Jiang, C. (2012). A non-local fracture model for composite laminates and numerical simulations by using the FFT method. Composites Part B: Engineering, 43(3), 961-971. doi:10.1016/j.compositesb.2011.08.055 Li, J., Tian, X.-X., & Abdelmoula, R. (2012). A damage model for crack prediction in brittle and quasi-brittle materials solved by the FFT method. International Journal of Fracture, 173(2), 135-146. doi:10.1007/s10704-011-9671-1 Malek, S., & Gibson, L. (2015). Effective elastic properties of periodic hexagonal honeycombs. Mechanics of Materials, 91, 226-240. doi:10.1016/j.mechmat.2015.07.008 Menig, R., Meyers, M. H., Meyers, M. A., & Vecchio, K. S. (2000). Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Materialia, 48(9), 2383-2398. doi:10.1016/s1359-6454(99)00443-7 Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M., & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Progress in Materials Science, 53(1), 1-206. doi:10.1016/j.pmatsci.2007.05.002 Mirzaeifar, R., Dimas, L. S., Qin, Z., & Buehler, M. J. (2015). Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment. ACS Biomaterials Science & Engineering, 1(5), 295-304. doi:10.1021/ab500120f Moulinec, H., & Suquet, P. (1998). A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering, 157(1-2), 69-94. doi:Doi 10.1016/S0045-7825(97)00218-1 Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2008). Tough, bio-inspired hybrid materials. SCIENCE, 322(5907), 1516-1520. doi:10.1126/science.1164865 Nair, A. K., Gautieri, A., Chang, S. W., & Buehler, M. J. (2013). Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun, 4, 1724. doi:10.1038/ncomms2720 Naleway, S. E., Porter, M. M., McKittrick, J., & Meyers, M. A. (2015). Structural Design Elements in Biological Materials: Application to Bioinspiration. Adv Mater, 27(37), 5455-5476. doi:10.1002/adma.201502403 Nicolay, C. W., & Vaders, M. J. (2006). Cranial suture complexity in white-tailed deer (Odocoileus virginianus). J Morphol, 267(7), 841-849. doi:10.1002/jmor.10445 Oftadeh, R., Haghpanah, B., Vella, D., Boudaoud, A., & Vaziri, A. (2014). Optimal fractal-like hierarchical honeycombs. Phys Rev Lett, 113(10), 104301. doi:10.1103/PhysRevLett.113.104301 Pijaudier‐Cabot, G., & Bažant, Z. P. (1987). Nonlocal Damage Theory. Journal of Engineering Mechanics, 113(10), 1512-1533. doi:10.1061/(asce)0733-9399(1987)113:10(1512) Sen, D., & Buehler, M. J. (2011). Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci Rep, 1, 35. doi:10.1038/srep00035 Song, F., Soh, A. K., & Bai, Y. L. (2003). Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 24(20), 3623-3631. doi:10.1016/S0142-9612(03)00215-1 Tran, P., Ngo, T. D., Ghazlan, A., & Hui, D. (2017). Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. Composites Part B: Engineering, 108, 210-223. doi:10.1016/j.compositesb.2016.09.083 Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., & Aksay, I. A. (2011). Deformation mechanisms in nacre. Journal of Materials Research, 16(09), 2485-2493. doi:10.1557/jmr.2001.0340 Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nat Mater, 14(1), 23-36. doi:10.1038/nmat4089 Yu, W. (2016). An Introduction to Micromechanics. Applied Mechanics and Materials, 828, 3-24. doi:10.4028/www.scientific.net/AMM.828.3 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69218 | - |
| dc.description.abstract | 材料內部的微結構對於材料整體行為有著關鍵性的影響,生物大量運用此一概念,由演化的方式產生出符合其需求的結構材料;如存在於鳥嘴與骨頭疏質部中的多孔洞細胞狀結構(cellular structure),使材料兼具高強度及低重量;又如珍珠母及骨頭密質部中的層狀複合結構(composite),使其擁有極佳的韌性。而仿生技術以相同的概念,發展仿生結構材料(bioinspired structural material),以求突破現今性質有限的人造材料,創作具有豐富性質的新興材料。
本研究取仿生結構材料中最具代表性的的細胞狀結構與仿生珍珠母複合結構作為研究模型,以有限元素法及快速傅立葉轉換配合微觀力學進行結構之機械性質的模擬與分析,並分別實作於Abaqus及Matlab,以設計仿生材料為目標,補足現階段所需之研究。 細胞狀結構中,本研究針對經典的蜂巢狀結構、Kagome結構及梯形結構,以相圖的方式呈現三個設計參數及其相對應的幾何參數,並探討階層式結構對於細胞狀結構的影響。在設計相圖中,使用者可於兩向等效楊氏係數、及體積密度三者中,選擇需求的數值並於圖中得知相對應的結構。而階層式結構則於研究中發現可以拓展有限的設計空間,將三種等向結構於設計空間(體積密度對上楊氏係數)中的三條設計直線,拓展為三條線內的所有範圍;且藉由兩尺度(two-scale)的方式,相對應的結構都能輕易的被找出來,顯示出階層式結構對於材料設計的潛力。 仿生珍珠母複合結構則以珍珠母之磚泥結構為啟發,探索更多可能存在的韌性機制。最後從五千多個案例中找出數百種具有韌性機制之結構,並將之分為具縱向細長軟材、橫向細長硬材及棋盤狀的三個群組,這三群結構內部都具有相同的微結構特徵、裂縫發展方式、應力應變曲線及應力分布趨勢,藉由這些共同點,微結構可能發展出良好的韌性。且於研究中發現這三種結構特徵也可以混合並同時應用於同種結構中,藉此能更進一步提升材料韌性的發展,可望往後作為設計具良好韌性之人造材料的基礎。 | zh_TW |
| dc.description.abstract | Microstructures play an important role in material properties; by evolution, it is widely applied in the Nature. For example, cellular structures in beak and cancellous bone form light and high strength materials; layered composite in nacre and osteon makes materials possessing high toughness. Inspired by the Nature, researchers use the same concept to create “bioinspired structural materials” to generate more artificial materials with rich properties.
In this research, three types of cellular structures (honeycomb, trapezoid and Kagome) are analyzed to assist material design; in addition, a generalized nacre-inspired composite is modeled and analyzed to explore toughening mechanism. To get the effective properties of the microstructures, finite element method and Fast Fourier Transform (FFT) for micromechanics are introduced to be the modeling tool, complemented by Abaqus and Matlab respectively. In the result, three design phase graph for cellular structures are generated, and the effect of hierarchical cellular structures are explored to assist future material design. The design graph contain three design parameters (axis effective Young’s modulus, relative density) and two geometry parameters in one graph. Therefore, providing desire properties, user can get the corresponding geometry parameter. While hierarchical structures can fill the design space, which originally consisted of only three lines. In addition, by two-scale analysis, corresponding geometry parameters can be easily found, which show the potential of hierarchical structures design. Finally, three groups of microstructures possessing toughening mechanisms are discovered. Respectively, each group of microstructures possess the same structural features, growing patterns of microcracks, stress redistributed patterns and the trend of stress-strain curve. With these common features, structures may develop better toughness. Furthermore, these structural features can be mixed in the same time, and by mixing different groups of structures, material may possess much higher toughness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:10:47Z (GMT). No. of bitstreams: 1 ntu-107-R05521602-1.pdf: 9619970 bytes, checksum: 4d9693ed4e78e9960a8fb7e2a2aa09db (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 圖目錄 v 表目錄 viii 第一章 緒論 3 1.1生物材料 3 1.2仿生結構材料 7 1.3研究目的 15 1.4研究大綱 16 第二章 理論與計算方法 17 2.1連體微觀力學(Continuum Micromechanics) 17 2.1.1代表性體積單元(RVE) 18 2.1.2均質化理論(Homogenization Theory) 19 2.1.3週期性邊界條件 21 2.2有限元素法於連體微觀力學 21 2.3快速傅立葉轉換於連體微觀力學 23 2.4非局部破壞力學 25 2.5計算方法之應用與限制 26 第三章 細胞狀仿生結構材料 27 3.1模型設定 27 3.2收斂性分析 28 3.3設計相圖及參數分析 30 3.4階層式結構 34 3.4.1碎形階層式結構 34 3.4.2跨尺度階層式結構 36 3.5小結 40 第四章 仿生珍珠母複合結構材料 41 4.1模型設定 41 4.2收斂性分析 44 4.3破壞型態分類 47 4.4韌性機制 50 4.4.1第一群結構 51 4.4.2第二群結構 55 4.4.3第三群結構 58 4.4.4韌性結構小結 61 4.4.5混群結構 62 4.5小結 65 第五章 結論與未來研究方向 66 5.1總結 66 5.2未來展望 67 參考文獻 68 附錄 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 快速傅立葉轉換 | zh_TW |
| dc.subject | 仿生結構材料 | zh_TW |
| dc.subject | 細胞狀結構 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 仿生珍珠母結構 | zh_TW |
| dc.subject | 階層式結構 | zh_TW |
| dc.subject | 等效楊氏係數 | zh_TW |
| dc.subject | 韌性機制 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 連體微觀力學 | zh_TW |
| dc.subject | Cellular Structure | en |
| dc.subject | Hierarchical Structure | en |
| dc.subject | Nacre-inspired Composite | en |
| dc.subject | Fast Fourier Transform | en |
| dc.subject | Finite Element Method | en |
| dc.subject | Bioinspired Structural Material | en |
| dc.subject | Continuum Micromechanics | en |
| dc.subject | Effective Young’s Modulus | en |
| dc.subject | Toughening Mechanism | en |
| dc.title | 仿生結構材料之機械性質模擬與分析──細胞狀結構與仿生珍珠母複合結構 | zh_TW |
| dc.title | Simulation and Analysis of Mechanical Properties for Bioinspired Structural Material - Cellular Structure and Nacre-inspired Composite | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張書瑋,陳柏宇 | |
| dc.subject.keyword | 仿生結構材料,細胞狀結構,複合材料,仿生珍珠母結構,階層式結構,等效楊氏係數,韌性機制,有限元素法,連體微觀力學,快速傅立葉轉換, | zh_TW |
| dc.subject.keyword | Bioinspired Structural Material,Cellular Structure,Nacre-inspired Composite,Hierarchical Structure,Toughening Mechanism,Effective Young’s Modulus,Continuum Micromechanics,Finite Element Method,Fast Fourier Transform, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201801635 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 9.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
