請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69189完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卿建業(Jian-Ye Ching) | |
| dc.contributor.author | Tzu-Ting Lin | en |
| dc.contributor.author | 林姿町 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:10:19Z | - |
| dc.date.available | 2019-07-26 | |
| dc.date.copyright | 2018-07-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-18 | |
| dc.identifier.citation | 吳采容( 民 106 )。 以有限圓錐貫入試驗估計水平向關聯性長度( 未出版之碩士論文 )。國立台灣大學,台北市。
Abramowitz, M. and Stegun, I. ( 1970 ). Handbook of Mathematical Functions. Dover, New York. Ahmed, A. and Soubra, A.-H. ( 2014 ). Probabilistic analysis at the serviceability limit state of two neighboring strip footings resting on a spatially random soil. Structural Safety, 49, 2-9. Ali, A., Huang, J., Lyamin, A.V., Sloan, S.W, Griffiths D.V., Cassidy, M.J., and Li, J.H. ( 2014 ). Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes. Engineering Geology, 179, 102-116. Altae, A., Fellenius, B. H. and Evgin, E. ( 1992 ). Axial load transfer for piles in sand. I. Tests on an instrumented precast pile, Can. Geotech. J., 29( 1 ), 11-20. A. Eslami Kenarsari, R. Jamshidi Chenari, A. Eslami ( 2012 ) Characterization of the correlation structure of residual CPT profiles in sand deposits. Geotechnical Engineering, 11( 1 ). Bong, T. and Stuedlein, A.W. ( 2017 ). CPT-based random field model parameters for liquefiable silty sands. Geo-Risk 2017: Geotechnical Risk Assessment and Management ( GSP 285 ), Denver, Colorado, USA, ASCE. Bong, T. and Stuedlein, A.W. ( 2018 ). Effect of cone penetration conditioning on random field model parameters and impact of spatial variability on liquefaction-induced differential settlements. ASCE Journal of Geotechnical and Geoenvironmental Engineering ( in press ). Breysse, D., Niandou, H., Elachachi, S., Houy, L. ( 2005 ). A generic approach to soil-structure interaction considering the effects of soil heterogeneity. Geotechnique, 55( 2 ), 143-150. Brockwell, P. J. and Davis, R. A. ( 1987 ). Time Series: Theory and Methods. Springer-Verlag, New York, 519 pages. Ching, J. and Phoon, K.K. ( 2013a ). Mobilized shear strength of spatially variable soils under simple stress states, Structural Safety, 41, 20-28. Ching, J. and Phoon, K.K. ( 2013b ). Probability distribution for mobilized shear strengths of spatially variable soils under uniform stress states, Georisk, 7( 3 ), 209-224. Ching, J., Phoon, K.K., and Kao, P.H. ( 2014 ). Mean and variance of the mobilized shear strengths for spatially variable soils under uniform stress states, ASCE Journal of Engineering Mechanics, 140( 3 ), 487-501. Ching, J. and Phoon, K.K. ( 2018 ). Impact of auto-correlation function model on the probability of failure, in review by ASCE Journal of Engineering Mechanics. Ching, J., Phoon, K.K., Beck, J.L., and Huang, Y. ( 2017a ). On the identification of geotechnical site-specific trend function, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3( 4 ), 04017021. Ching, J., Wu, T.J., Stuedlein, A.W., and Bong, T. ( 2017b ). Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers ( in press ). Cressie, N. 1990. “The Origins of Kriging.” Mathematical Geology 22 ( 3 ): 239–252. doi:10.1007/BF00889887. DeGroot, D.J. and Baecher, G.B. ( 1993 ). Estimating autocovariances of in-situ soil properties. ASCE Journal of Geotechnical Engineering, 119( 1 ), 147-166. Fan, H., Liang, R., and Asce, F. ( 2005 ). Reliability-based design of laterally loaded piles considering soil spatial variability. Foundation engineering in the face of uncertainty ( ASCE GSP 229 ), 475–486. Fenton, G.A. and Griffiths, D.V. ( 2003 ). Bearing capacity prediction of spatially random c- soils. Canada Geotechnical Journal, 40( 1 ), 54-65. Fenton, G.A., Griffiths, D.V. and Williams, M.B. ( 2005 ). Reliability of traditional retaining wall design. Geotechnique, 55( 1 ), 55-62. Gianella, T.N. and Stuedlein, A.W. ( 2018 ). Performance of driven displacement pile-improved ground in controlled blasting field tests. ASCE Journal of Geotechnical and Geoenvironmental Engineering ( in press ). Griffiths, D.V., Fenton, G.A. and Manoharan, N. ( 2006 ). Undrained bearing capacity of two-strip footings on spatially random soil. ASCE International Journal of Geomechanics, 6( 6 ), 421-427. Guttorp, P. and Gneiting, T. ( 2006 ). Studies in the history of probability and statistics XLIX on the Matérn correlation family. Biometrika, 93( 4 ), 989-995. Haldar, S., and Babu, G. L. S. ( 2008 ). Effect of soil spatial variability on the response of laterally loaded pile in undrained clay. Computers and Geotechnics, 35( 4 ), 537–547. Hicks, M.A. ( 2013 ). An explanation of characteristic values of soil properties in Eurocode 7. In Modern Geotechnical Design Code of Practice ( Eds.: Arnold, P., Fenton, G.A., Hicks, M.A., Schweckendiek, T., and Simpson, B. ), IOS Press, Amsterdam, The Netherlands. Hicks, M.A. and Nuttall, J.D. ( 2012 ). Influence of soil heterogeneity on geotechnical performance and uncertainty: a stochastic view on EC7. Proceedings of the 10th International Probabilistic Workshop, Stuttgart, Germany. Hristopulos, D.T. and Žukovič, M. ( 2011 ). Relationships between correlation lengths and integral scales for covariance models with more than two parameters. Stochastic Environmental Research and Risk Assessment, 25, 11-19. Hu, Y.G. and Ching, J. ( 2015 ). Impact of spatial variability in soil shear strength on active lateral forces. Structural Safety, 52, 121-131. Jaksa, M. ( 1995 ). The Influence of spatial variability on the geotechnical design properties of a stiff, overconsolidated clay. Ph.D. Dissertation, University of Adelaide, Australia. Jaksa, M.B., Kaggwa, W.S., and Brooker, P.I. ( 1999 ). Experimental evaluation of the scale of fluctuation of a stiff clay. Proceedings of the 8th International Conference on Application of Statistics and Probability, A.A. Balkema, Rotterdam, 415-422. Jaksa, M.B., Goldsworthy, J.S., Fenton, G.A., Kaggwa, W.S., Griffiths, D.V., Kuo, Y.L. and Poulos, H.G. ( 2005 ). Towards reliable and effective site investigations. Geotechnique, 55( 2 ), 109-121. Krige, D. G. ( 1951 ). A Statistical Approach to Some Basic Mine Valuation Problems on Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52 ( 6 ): 119–139. Lacasse, S. and Nadim, F. ( 1996 ). Uncertainties in characterizing soil properties. Proc., Uncertainty in the Geologic Environment: From Theory to Practice, Madison, Wis., ASCE, Reston, Va., 49-75. Li, D. Q., Qi, X. H., Phoon, K. K., Zhang, L. M., and Zhou, C. B. ( 2014 ). Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes. Structural Safety, 49, 45–55. Liu, W.F., Leung, Y.F., and Lo, M.K. ( 2017 ). Integrated framework for characterization of spatial variability of geological profiles. Canadian Geotechnical Journal, 54( 1 ), 47-58. Marchant, B. and Lark, R. ( 2007 ). The Matérn variogram model: implications for uncertainty propagation and sampling in geostatistical surveys. Geoderma, 140( 4 ), 337-345. Minasny, B. and McBratney, A.B. ( 2005 ). The Matérn function as a general model for soil variograms. Geoderma, 128( 3-4 ), 192-207. Phoon, K.K., Quek, S.T., and An, P. ( 2003 ). Identification of statistically homogeneous soil layers using modified Bartlett statistics. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 129( 7 ), 649-659. Rasmussen, C.E. and Williams, C.K.I. ( 2006 ). Gaussian Processes for Machine Learning, the MIT Press. Soubra, A.H., Massih, Y.A., and Kalfa, M. ( 2008 ). Bearing capacity of foundations resting on a spatially random soil. GeoCongress 2008: Geosustainability and Geohazard Mitigation ( GSP 178 ), New Orleans Louisiana USA, ASCE, 66-73. Srivastava, A., and Babu, G. L. S. ( 2009 ). Effect of soil variability on the bearing capacity of clay and in slope stability problems. Engineering Geology, 108( 1-2 ), 142–152. Stein, M.L. ( 1999 ). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York. Stuedlein, A.W., Kramer, S.L., Arduino, P., and Holtz, R.D. ( 2012 ). Geotechnical characterization and random field modeling of desiccated clay. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 138( 11 ), 1301-1313. Stuedlein, A.W., Gianella, T.N., and Canivan, G.J. ( 2016 ). Densification of granular soils using conventional and drained timber displacement piles. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 142( 12 ), 04016075. Stuedlein, A.W. and Bong, T. ( 2017 ). Effect of spatial variability on static and liquefaction-induced differential settlements, Georisk 2017, ASCE, Denver, Co. Uzielli, M., Vannucchi, G., and Phoon, K.K. ( 2005 ). Random field characterisation of stress-normalised cone penetration testing parameters. Geotechnique, 55( 1 ), 3-20. Van den Eijnden, A. P. and M. A. Hicks. ( 2011 ). Conditional Simulation for Characterizing the Spatial Variability of Sand State. In Proceedings of the 2nd International Symposium on Computational Geomechanics, Dubrovnik, edited by S. Pietruszczak and G. N. Pande, 288–296. Rhodes, Greece: IC2E. Vanmarcke, E.H. ( 1977 ). Probabilistic modeling of soil profiles. ASCE Journal of Geotechnical Engineering, GT11, 1227-1246. Vanmarcke, E.H. ( 1983 ). Random Fields: Analysis and Synthesis. The MIT Press, Cambridge, Massachusetts. Vessia, G., Cherubini, C., Pieczyńska, J. and Puła, W. ( 2009 ). Application of random finite element method to bearing capacity design of strip footing. Journal of Geoengineering, 4, 103-111. Wang, Y. and Cao, Z. ( 2013 ). Expanded reliability-based design of piles in spatially variable soil using efficient Monte Carlo simulations. Soil and Foundations, 53( 6 ), 820-834. Wu, S.-H., Ou, C.-Y. Y., Ching, J., Hsein Juang, C., and Juang, C. H. ( 2012 ). Reliability-Based Design for Basal Heave Stability of Deep Excavations in Spatially Varying Soils. Journal of Geotechnical and Geoenvironmental Engineering, 138( 5 ), 594–603. Yan, S.-W. and Guo, L.-P. ( 2014 ). Calculation of scale of fluctuation and variance reduction function. Transactions of Tianjin University, 21( 1 ), 41-49. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69189 | - |
| dc.description.abstract | 關聯性長度一直被視為是描述空間相關性的重要(也可能是唯一的)參數,但在最近的研究中,樣本路徑平滑度也被接受為重要的參數,尤其是大地工程含有找弱帶破壞機制的案例,更是突顯平滑度的重要性。故本研究以估計關聯性長度及平滑度參數為目標進行探討。
研究中採用的評估方法有method of moments、maximum likelihood method,搭配不同的自相關函數模型下去分析及比較,其中自相關函數模型又分為傳統及非傳統,兩者的差別在於傳統的自相關函數模型僅包含關聯性長度一個參數,非傳統的自相關函數模型( 即Whittle-Matérn 模型 )可以同時將關聯性長度及平滑度參數納入考量。 研究結果顯示,傳統自相關模型如果搭配maximum likelihood method,可能導致關聯性長度估計錯誤,這是因為參數間互相制衡的現象,若要同時捕捉關聯性長度及平滑度參數,可以採用maximum likelihood method搭配非傳統的模型。另外,估計樣本路徑平滑度時並不建議採用method of moments,因為method of moments 評估參數的機制對於平滑度並不敏感,即使搭配非傳統模型仍然無法捕獲到正確的平滑度。 | zh_TW |
| dc.description.abstract | The scale of fluctuation ( SOF ) has been regarded as an important ( and probably the only ) parameter to characterize the auto-correlation of a spatially variable soil property. However, the sample path smoothness is also accepted as an important parameter in recent studies. Especially the weakest path seeking mechanism in the geotechnical engineering has highlighted the importance of sample path smoothness. Therefore, the aim of this study is to estimate the SOF and smoothness more accurately.
Method of moments and maximum likelihood method with different auto-correlation function ( ACF ) models are adopted in this study. The ACF model is divided into classical and non-classical. The classical ACF models have only a single parameter ( SOF ), while the non-classical ACF model ( i.e., Whittle-Matérn model ) take both of the SOF and smoothness into account. The results reveal that classical ACF models may produce misleading SOF estimates if the maximum likelihood method is adopted, because of the trade-off between two parameters. If we want to capture the SOF and smoothness simultaneously, we can use the Maximum likelihood method with non-classical model. In addition, the method of moments is not recommended for estimating the sample path smoothness because the mechanism of the method of moments is not sensitive to smoothness, even with non- classical model still cannot capture the smoothness accurately. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:10:19Z (GMT). No. of bitstreams: 1 ntu-107-R05521113-1.pdf: 3005477 bytes, checksum: 344f0c8b2ea3a50ca19660a4537662e6 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究動機與目的 2 1.2 研究方法 4 1.3 本文內容 5 第二章 文獻回顧 6 2.1 隨機場 ( random field ) 6 2.1.1 穩態隨機場 ( stationary random field ) 6 2.1.2 自相關性函數 ( auto-correlation function ) 7 2.2 自相關函數模型 ( auto- correlation function model ) 8 2.2.1 常用之自相關函數模型 8 2.2.2 Whittle-Matérn 模型 9 2.3 平滑度ν的重要性 12 2.3.1 黏土中受軸壓的摩擦樁 12 2.3.2 淺層滑坡 14 2.4 隨機場參數估計方法 19 2.4.1 Method of moments ( MM ) ( 動差法 ) 19 2.4.2 Maximum likelihood method ( ML ) ( 最大概似函數法 ) 20 2.4.3 其他估計方法 20 2.4.3.1 Vanmarcke’s expeditive method ( VXP ) 20 2.4.3.2 Fluctuation function method ( 關聯性函數法 ) 21 2.4.3.3 Bartlett’s limit method ( BLM ) ( 巴特利極限法 ) 22 2.4.3.4 Spectral density method ( 譜密度法 ) 23 2.4.3.5 Conditional random fields ( 條件隨機場 ) 24 第三章 研究方法 25 3.1 資料模擬 25 3.1.1 隨機場參數對模擬資料的影響 25 3.1.2 一維隨機場之模擬 28 3.2 傳統自相關模型下估計隨機場參數之表現 29 3.2.1 Method of moments ( MM ) 29 3.2.2 Maximum likelihood method ( ML ) 31 3.2.3討論 33 3.3 非傳統自相關模型( W-M model )下估計隨機場參數 36 3.3.1 Method of moments 36 3.3.2 Maximum likelihood method 38 3.3.3綜合比較 39 3.4 討論與小結 40 第四章 現地案例討論 42 4.1 案例一 42 4.1.1垂直向土壤參數 44 4.1.1.1 Method of moments 44 4.1.1.2 Maximum likelihood method 45 4.1.2水平向土壤參數 47 4.1.3對案例一的討論 49 4.2 案例二 50 4.2.1垂直向土壤參數 51 4.2.2水平向土壤參數 53 4.2.3對案例二的討論 60 第五章 建議與結論 63 5.1建議 63 5.2結論 65 參考文獻 67 附錄A 提問與答覆 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 平滑度 | zh_TW |
| dc.subject | method of moments | zh_TW |
| dc.subject | maximum likelihood method | zh_TW |
| dc.subject | Whittle-Matern model | zh_TW |
| dc.subject | 關聯性長度 | zh_TW |
| dc.subject | Whittle-Matern model | en |
| dc.subject | maximum likelihood method | en |
| dc.subject | scale of fluctuation | en |
| dc.subject | method of moments | en |
| dc.subject | smoothness | en |
| dc.title | 圓錐貫入試驗空間相關性之研究 | zh_TW |
| dc.title | Characterizing the auto-correlation structure in
spatial variability of piezocone profiles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉家男(Chia-Nan Liu),王瑞斌(Jui-pin Wang) | |
| dc.subject.keyword | 關聯性長度,平滑度,method of moments,maximum likelihood method,Whittle-Matern model, | zh_TW |
| dc.subject.keyword | scale of fluctuation,smoothness,method of moments,maximum likelihood method,Whittle-Matern model, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU201801657 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
