Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69186
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖
dc.contributor.authorYI-YING WANGen
dc.contributor.author王怡穎zh_TW
dc.date.accessioned2021-06-17T03:10:16Z-
dc.date.available2019-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-18
dc.identifier.citation1. Abubakar, I., et al., A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technol Assess, 2007. 11(36): p. 1-216.
2. Ahmed, A., et al., Biosensors for whole-cell bacterial detection. Clinical microbiology reviews, 2014. 27(3): p. 631-646.
3. Opota, O., et al., Blood culture-based diagnosis of bacteraemia: state of the art. Clinical Microbiology and Infection. 21(4): p. 313-322.
4. Wang, S., et al., Portable microfluidic chip for detection of Escherichia coli in produce and blood. Vol. 7. 2012. 2591-600.
5. Anja, B., et al., Cantilever-like micromechanical sensors. Reports on Progress in Physics, 2011. 74(3): p. 036101.
6. Kasas, S., et al., Detecting nanoscale vibrations as signature of life. Proceedings of the National Academy of Sciences, 2015. 112(2): p. 378-381.
7. Braissant, O., et al., Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiology Letters, 2010. 303(1): p. 1-8.
8. Nirschl, M., F. Reuter, and J. Vörös, Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis. Vol. 1. 2011. 70-92.
9. Kinnunen, P., et al., Self-Assembled Magnetic Bead Biosensor for Measuring Bacterial Growth and Antimicrobial Susceptibility Testing. Small, 2012. 8(16): p. 2477-2482.
10. Waldeisen, J.R., et al., A Real-Time PCR Antibiogram for Drug-Resistant Sepsis. PLOS ONE, 2011. 6(12): p. e28528.
11. Maurin, M., Real-time PCR as a diagnostic tool for bacterial diseases. Expert Review of Molecular Diagnostics, 2012. 12(7): p. 731-754.
12. D. Scott McVey, M.K.a.M.M.C., Veterinary Microbiology, 3rd edition. 2013: WILEY-BLACKWELL.
13. Carretto, E., et al., Comparison of the Staphylococcus QuickFISH BC Test with the Tube Coagulase Test Performed on Positive Blood Cultures for Evaluation and Application in a Clinical Routine Setting. Journal of Clinical Microbiology, 2013. 51(1): p. 131-135.
14. Deck, M.K., et al., Multicenter Evaluation of the Staphylococcus QuickFISH Method for Simultaneous Identification of Staphylococcus aureus and Coagulase-Negative Staphylococci Directly from Blood Culture Bottles in Less than 30 Minutes. Journal of Clinical Microbiology, 2012. 50(6): p. 1994-1998.
15. Tissari, P., et al., Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. The Lancet, 2010. 375(9710): p. 224-230.
16. Kimura, T., et al., Evaluation of the MRSA rapid detection assay (BD GeneOhm MRSA detection kit) by a real-time PCR. Vol. 57. 2009. 425-30.
17. Boardman, A.K., et al., Rapid Detection of Bacteria from Blood with Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2016. 88(16): p. 8026-8035.
18. Premasiri, W.R., et al., The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Analytical and Bioanalytical Chemistry, 2016. 408(17): p. 4631-4647.
19. Petryayeva, E. and U.J. Krull, Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Analytica Chimica Acta, 2011. 706(1): p. 8-24.
20. Liu, C.-Y., et al., Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Scientific Reports, 2016. 6: p. 23375.
21. Subaihi, A., et al., Quantitative Online Liquid Chromatography–Surface-Enhanced Raman Scattering (LC-SERS) of Methotrexate and its Major Metabolites. Analytical Chemistry, 2017. 89(12): p. 6702-6709.
22. Sackmann, E.K., A.L. Fulton, and D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature, 2014. 507: p. 181.
23. Friend, J. and L. Yeo, Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics, 2010. 4(2): p. 026502.
24. M Whitesides, G., Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368-373. Vol. 442. 2006. 368-73.
25. Chen, L. and J. Choo, Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. ELECTROPHORESIS, 2008. 29(9): p. 1815-1828.
26. Tung, Y.-C., et al., Optofluidic detection for cellular phenotyping. Lab on a Chip, 2012. 12(19): p. 3552-3565.
27. Oh, J.-H., et al., Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Analytical and Bioanalytical Chemistry, 2015. 407(29): p. 8627-8645.
28. Huang, J.-A., et al., SERS-Enabled Lab-on-a-Chip Systems. Advanced Optical Materials, 2015. 3(5): p. 618-633.
29. Vlasko-Vlasov, V., et al., Liquid cell with plasmon lenses for surface enhanced Raman spectroscopy. Applied Physics Letters, 2010. 96(20): p. 203103.
30. Xu, B.-B., et al., A SERS-active microfluidic device with tunable surface plasmon resonances. ELECTROPHORESIS, 2011. 32(23): p. 3378-3384.
31. Kim, D., et al., Microfluidic-SERS Devices for One Shot Limit-of-Detection. The Analyst, 2014. 139(13): p. 3227-3234.
32. Chan, A.S., et al., A simple microfluidic chip design for fundamental bioseparation. Journal of analytical methods in chemistry, 2014. 2014.
33. Oh, Y.-J. and K.-H. Jeong, Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. Vol. 14. 2014.
34. Deng, Y.-L. and Y.-J. Juang, Electrokinetic trapping and surface enhanced Raman scattering detection of biomolecules using optofluidic device integrated with a microneedles array. Biomicrofluidics, 2013. 7(1): p. 014111.
35. Gaspar, A., M.E. Piyasena, and F.A. Gomez, Fabrication of Fritless Chromatographic Microchips Packed with Conventional Reversed-Phase Silica Particles. Analytical Chemistry, 2007. 79(20): p. 7906-7909.
36. Gaspar, A., A. Nagy, and I. Lazar, Integration of ground aerogel particles as chromatographic stationary phase into microchip. Journal of Chromatography A, 2011. 1218(7): p. 1011-1015.
37. Nagy, A. and A. Gaspar, Packed multi-channels for parallel chromatographic separations in microchips. Journal of Chromatography A, 2013. 1304: p. 251-256.
38. Huft, J., C.A. Haynes, and C.L. Hansen, Fabrication of High-Quality Microfluidic Solid-Phase Chromatography Columns. Analytical Chemistry, 2013. 85(3): p. 1797-1802.
39. Kabiri, S., et al., Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection. RSC Advances, 2014. 4(29): p. 15276-15280.
40. Gong, M., P.W. Bohn, and J.V. Sweedler, Centrifugal Sedimentation for Selectively Packing Channels with Silica Microbeads in Three-Dimensional Micro/Nanofluidic Devices. Analytical Chemistry, 2009. 81(5): p. 2022-2026.
41. Grinias, J.P. and R.T. Kennedy, Advances in and prospects of microchip liquid chromatography. TrAC Trends in Analytical Chemistry, 2016. 81(Supplement C): p. 110-117.
42. Ceriotti, L., N.F. de Rooij, and E. Verpoorte, An Integrated Fritless Column for On-Chip Capillary Electrochromatography with Conventional Stationary Phases. Analytical Chemistry, 2002. 74(3): p. 639-647.
43. Nagy, A., E. Baranyai, and A. Gaspar, Interfacing microfluidic chip-based chromatography with flame atomic absorption spectrometry for the determination of chromium(VI). Microchemical Journal, 2014. 114: p. 216-222.
44. Grinias, J.P. and R.T. Kennedy, Advances in and prospects of microchip liquid chromatography. TrAC Trends in Analytical Chemistry, 2015.
45. Cowcher, D.P., R. Jarvis, and R. Goodacre, Quantitative Online Liquid Chromatography-Surface-Enhanced Raman Scattering of Purine Bases. Analytical Chemistry, 2014. 86(19): p. 9977-9984.
46. Lim, C., et al., Optofluidic platforms based on surface-enhanced Raman scattering. Analyst, 2010. 135(5): p. 837-844.
47. Taylor, L.C., et al., Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips. Analyst, 2012. 137(4): p. 1005-1012.
48. Wallace, R.A., N.V. Lavrik, and M.J. Sepaniak, Ultra-thin layer chromatography with integrated silver colloid-based SERS detection. ELECTROPHORESIS, 2017. 38(2): p. 361-367.
49. Chen, J., et al., On-Chip Ultra-Thin Layer Chromatography and Surface Enhanced Raman Spectroscopy. Lab on a Chip, 2012. 12(17): p. 3096-3102.
50. Geissler, D., et al., Microchip HPLC separations monitored simultaneously by coherent anti-Stokes Raman scattering and fluorescence detection. Microchimica Acta, 2017. 184(1): p. 315-321.
51. Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275(5303): p. 1102-1106.
52. Fang, Y., N.-H. Seong, and D.D. Dlott, Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering. Science, 2008. 321(5887): p. 388-392.
53. Li, J.F., et al., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010. 464(7287): p. 392-395.
54. Lloyd R. Snyder, J.J.K., John W. Dolan, INTRODUCTION TO MODERN LIQUID CHROMATOGRAPHY Third Edition. 2010: A John Wiley & Sons, Inc., Publication.
55. Raman, C.V. and K.S. Krishnan, A New Type of Secondary Radiation. Nature, 1928. 121: p. 501.
56. 王俊凱, 拉曼光譜分析. 材料分析 第二版 中國材料科學學會. Vol. 第18章. 2014.
57. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
58. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
59. Ahamad, N.U., M. Al-Amin, and A. Ianoul, A Simple Approach to Engineer SERS Substrates and Plasmonic Thin Film. Journal of Nanoparticles, 2014.
60. Foo, K.Y. and B.H. Hameed, Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 2010. 156(1): p. 2-10.
61. Liu, C.-Y., et al., Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. 2016. 6: p. 23375.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69186-
dc.description.abstract細菌的鑑定及分類已廣泛應用於許多領域,例如: 食物、水質、敗血症等檢測。表面增強型拉曼散射 (surface-enhanced Raman scattering, SERS) 光學檢測技術因具有高專一性及非侵入性的優點,目前已被應用於細菌偵測的研究領域,其偵測的細菌指紋光譜是由細菌代謝的嘌呤衍生物所貢獻,此代謝混合物產生的光譜非常複雜,為了解決這個問題,我們發展了一個結合液相色層分析 (liquid chromatography, LC) 及表面增強型拉曼散射進行混合物分離及原位檢測的微流道平台 (LC-SERS microfluidic platform) 。首先,本論文使用具有螢光的FITC及R6G混合物進行此微流道系統功能表現的測試,藉由螢光訊號的記錄和表面增強型拉曼散射光譜偵測,此系統能夠成功地將兩種分子進行分離及原位檢測。接著,兩種具有相似表面增強型拉曼散射光譜的大腸桿菌代謝物―次黃嘌呤 (hypoxanthine) 及腺嘌呤 (adenine) 混合物亦驗證了此系統於生物分子的檢測表現。最後,尿嘧啶 (uracil) 及腺嘌呤 (adenine) 的實驗除了評量此系統的功能表現外也用來測試我們進一步建置的異地偵測平台。總結本論文之LC-SERS微流道平台有兩個重要的特色,其一,此平台之空間體積較傳統機台小一個數量級以上,其二,此平台能夠進行自動化並即時的流體控制,有效的減少樣本及試劑之使用量和交叉污染的問題。綜合以上所述,此高度整合之微型化LC-SERS流道系統平台能夠幫助細菌的偵測及監控並降低檢測成本,以實現更廣泛的臨床應用。zh_TW
dc.description.abstractBacteria identification and characterization reveal much important information in various fields, such as: food safety, water quality, sepsis and so on. Surface-enhanced Raman scattering (SERS) has been applied for bacteria identification due to its highly specific and non-invasive features. However, the SERS spectra of bacteria are usually very complicated due to their complex metabolite composition of purine derivatives. To address the above problem, we developed a microfluidic platform which enables on-chip liquid chromatography (LC) separation of multiple molecules followed by in situ SERS detection. A mixture of fluorescent FITC and R6G dyes was tested in the system to confirm its functionality. Their retention times were revealed by time-lapsed fluorescence imaging and SERS detection. Next, the system separated a mixture of hypoxanthine and adenine— the main purine metabolites of E. coli—and identified them with acquired SERS signatures. Then, a uracil and adenine mixture was tested to evaluate the performance of the platform. In the end, an ex situ SERS detection was introduced. The LC-SERS microfluidic platform holds two important features. First, the developed microfluidic LC column is just few centimeters long that is one order of magnitude shorter than commercial HPLC columns. Second, the microfluidic flow control system connected to the LC-SERS microfluidic device allows for automatic and real-time fluidic control, greatly reducing sample consumption and preventing any potential cross contamination. Accordingly, this highly integrated and miniaturized LC-SERS microfluidic system could greatly facilitate identification and monitoring of bacteria, relocating the entire process from modern microbiology laboratories with expensive facilities to actual clinical settings, which in turn enables punctually available diagnosis data.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:10:16Z (GMT). No. of bitstreams: 1
ntu-107-R04945052-1.pdf: 5492492 bytes, checksum: 34205b14bab8dad6d53ad4a3675fd1f7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Research background 1
1.1.1 Bacteria detection 1
1.1.2 SERS and bacteria detection 4
1.1.3 Challenges of SERS-based sensing 6
1.2 Literature review 7
1.2.1 Microfluidic SERS systems 7
1.2.2 Microfluidic liquid chromatography 10
1.2.3 Microfluidic LC with SERS 12
1.2.4 Summary of microfluidic LC-SERS 14
1.3 Research motivation 15
1.4 Thesis structure 17
Chapter 2 Experimental design 18
2.1 Reverse phase liquid chromatography 18
2.1.1 Liquid chromatography 18
2.1.2 Reverse phase liquid chromatography 21
2.2 SERS detection by two-dimensional SERS-active substrate 22
2.2.1 Raman scattering 22
2.2.2 Surface-enhanced Raman scattering 24
2.2.3 Two-dimensional SERS-active substrate 26
2.3 Microfluidic chip design 27
2.4 Operation procedures 28
Chapter 3 Materials and methods 30
3.1 LC-SERS microfluidic device fabrication 30
3.1.1 PDMS channel fabrication 30
3.1.2 Two-dimensional SERS-active substrate 34
3.1.3 LC-SERS microfluidic device 35
3.1.4 LC column 37
3.2 Automated microfluidic flow control system 39
3.3 Optical setup 42
3.4 SERS measurement and spectral signal processing 42
3.5 Sample measurement 43
Chapter 4 Results and discussion 44
4.1 LC-SERS microfluidic device 44
4.2 Preliminary test 46
4.2.1 FITC and R6G 46
4.2.2 The optimization of mobile phase 47
4.2.3 Functionality test of LC-SERS microfluidic device 49
4.2.4 In situ SERS detection 51
4.3 Sample mixture of hypoxanthine and adenine 53
4.4 Sample mixture of uracil and adenine 57
4.5 Ex situ SERS detection 59
Chapter 5 Conclusion 64
Chapter 6 Future work 65
6.1 Improving the LC-ex situ SERS detection system 65
6.2 Introducing the gradient concentrations of mobile phase 65
6.3 Including the sample process function in the LC-SERS microfluidic system 66
References 67
dc.language.isoen
dc.subject表面增強型拉曼散射zh_TW
dc.subject液相色層分析zh_TW
dc.subject微流道zh_TW
dc.subjectLiquid chromatography (LC)en
dc.subjectSurface-enhanced Raman scattering (SERS)en
dc.subjectMicrofluidicsen
dc.title整合液相色層分析及表面增強型拉曼散射於單一微流道檢測平台zh_TW
dc.titleIntegrating Liquid Chromatography and Surface-Enhanced Raman Scattering in a Microfluidic Platformen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王玉麟,王俊凱,陳奕帆,劉定宇
dc.subject.keyword液相色層分析,表面增強型拉曼散射,微流道,zh_TW
dc.subject.keywordLiquid chromatography (LC),Surface-enhanced Raman scattering (SERS),Microfluidics,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201801643
dc.rights.note有償授權
dc.date.accepted2018-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved