請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69174完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥甫 | |
| dc.contributor.author | Chen-Yi Lin | en |
| dc.contributor.author | 林宸儀 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:10:05Z | - |
| dc.date.available | 2023-08-19 | |
| dc.date.copyright | 2018-08-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-19 | |
| dc.identifier.citation | Baweja, H. S., Parhar, T., Mirbod, O., & Nuske, S. (2018). StalkNet: A Deep Learning Pipeline for High-Throughput Measurement of Plant Stalk Count and Stalk Width. In Field and Service Robotics (pp. 271-284). Springer, Cham.
Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on pattern analysis and machine intelligence, 23(11), 1222-1239. Cheema, G. S., & Anand, S. (2017, September). Automatic detection and recognition of individuals in patterned species. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 27-38). Springer, Cham. Chen, G., Han, T. X., He, Z., Kays, R., & Forrester, T. (2014, October). Deep convolutional neural network based species recognition for wild animal monitoring. In Image Processing (ICIP), 2014 IEEE International Conference on (pp. 858-862). IEEE. Council of Agriculture, Executive Yuan, Taiwan. (2015). Results of animal husbandry statistics survey. Taipei, Taiwan: Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 17(9), 2022. Fujii, T., Yokoi, H., Tada, T., Suzuki, K., & Tsukamoto, K. (2009, February). Poultry tracking system with camera using particle filters. In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on (pp. 1888-1893). IEEE. Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405(6789), 947. Hansen, M. F., Smith, M. L., Smith, L. N., Salter, M. G., Baxter, E. M., Farish, M., & Grieve, B. (2018). Towards on-farm pig face recognition using convolutional neural networks. Computers in Industry, 98, 145-152. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 675-678). ACM. Lara, L. J., & Rostagno, M. H. (2013). Impact of heat stress on poultry production. Animals, 3(2), 356-369. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551. Leroy, T., Vranken, E., Van Brecht, A., Struelens, E., Sonck, B., & Berckmans, D. (2006). A computer vision method for on-line behavioral quantification of individually caged poultry. Transactions of the ASABE, 49(3), 795-802. Mack, L. A., Felver-Gant, J. N., Dennis, R. L., & Cheng, H. W. (2013). Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poultry science, 92(2), 285-294. Mashaly, M. M., Hendricks 3rd, G. L., Kalama, M. A., Gehad, A. E., Abbas, A. O., & Patterson, P. H. (2004). Effect of heat stress on production parameters and immune responses of commercial laying hens. Poultry science, 83(6), 889-894. Murphy, L. B., & Preston, A. P. (1988). Time‐budgeting in meat chickens grown commercially. British Poultry Science, 29(3), 571-580. Neubeck, A., & Van Gool, L. (2006, August). Efficient non-maximum suppression. In Pattern Recognition, 2006. ICPR 2006. 18th International Conference on (Vol. 3, pp. 850-855). IEEE. Purswell, J. L., Dozier III, W. A., Olanrewaju, H. A., Davis, J. D., Xin, H., & Gates, R. S. (2012). Effect of temperature-humidity index on live performance in broiler chickens grown from 49 to 63 days of age. In 2012 IX International Livestock Environment Symposium (ILES IX) (p. 3). American Society of Agricultural and Biological Engineers. Puzicha, J., Hofmann, T., & Buhmann, J. M. (1997, June). Non-parametric similarity measures for unsupervised texture segmentation and image retrieval. In Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on (pp. 267-272). IEEE. Reddy, V. P., Reddy, K. T., Dawood, Y. B., YaagnaTheja, K. M., Munesh, C., & Sraavani, M. V. L. (2013). Performance evaluation of object tracking technique based on position vectors. International Journal of Image Processing (IJIP), 7(2), 124. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems(pp. 91-99). Sergeant, D., Boyle, R., & Forbes, M. (1998). Computer visual tracking of poultry. Computers and Electronics in Agriculture, 21(1), 1-18. Siegel, P. B., Beane, W. L., & Kramer, C. Y. (1962). The measurement of feeding activity in chickens to 8 weeks of age. Poultry Science, 41(5), 1419-1422. Swain, M. J., & Ballard, D. H. (1991). Color indexing. International journal of computer vision, 7(1), 11-32. Tao, X., & Xin, H. (2003). Temperature-humidity-velocity index for market-size broilers. In 2003 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers. Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 22(11), 1330-1334. Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical chemistry, 39(4), 561-577. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69174 | - |
| dc.description.abstract | 家禽和雞蛋是飲食中的主要蛋白質來源,不但營養價值高,也是許多加工食品的主要原料。此外,家禽年產值占臺灣畜牧業總銷售量的31.19%,是國內很重要的經濟來源。在熱帶和亞熱帶地區,熱緊迫是家禽產業面臨的挑戰性問題之一。熱緊迫的影響不僅降低雞隻的生長速度和雞蛋的品質, 甚至導致死亡率的提升。典型的雞隻熱緊迫症狀包括飲水頻率的增加與進食量的減少,藉由上述行為以保持體溫的恆定。在雞隻管理上,如果能及早發現熱緊迫現象,絕對是穩定家禽產業生產的關鍵。傳統的雞隻監控以溫濕度指數 (THI) 作為熱緊迫現象之評估。然而, THI只是一個間接指標。實際上熱緊迫的現象可能會因為雞隻品種和飲食供應而異。本研究直接利用影像和深度學習演算法對雞隻的行為進行監測。在此研究中,利用樹莓派和一個網路攝影機來獲取雞舍內的雞隻圖像,並建立了深度卷積神經網路分類器作為個別雞隻偵測之模型。最後,將個別雞隻偵測結果做活動力追蹤。此系統能即時且有效地監控雞隻活動力和環境因子,並將雞隻活動力結合環境因子做分析,可在未來做為評估雞隻熱緊迫狀態之參考。 | zh_TW |
| dc.description.abstract | Poultry and eggs are major sources of dietary protein. Their production accounted for at least 30% of total animal husbandry sales in Taiwan. As in the tropical and subtropical areas, heat stress is one of the most challenging problems for the poultry industry in Taiwan. Heat stress reduces growth rate of chickens and quality of eggs and is even associated with sudden deaths. Typical heat stress symptoms include increasing the frequency of drinking, reducing feed intake and movement to maintain a constant body temperature. Conventionally, the level of heat stress was indicated using temperature-humidity index (THI). THI is, however, an indirect indicator. The level of heat stress may vary with chicken varieties and dietary supplies to the chickens. This work proposed to monitor behaviors of chickens directly using time lapsed images and deep learning algorithms. In the study, an experimental coop was constructed to host ten chickens. An embedded system was designed to acquire images of the chickens at a rate of one frame per second and to measure the temperature and humidity of the coop. A Faster R-CNN model was then developed on a personal computer to identify and localize the chickens in the images. The movements and drinking frequencies of the chickens under various THI values were then analyzed. The proposed method achieved a mAP of 93.0% and an overall accuracy of 98.16% in chicken identification, and achieved an accuracy of 98.94% in chicken tracking. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:10:05Z (GMT). No. of bitstreams: 1 ntu-107-R05631047-1.pdf: 1824539 bytes, checksum: 72d081eea73c638153c32bb8d14fef5c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii CHAPTER 1. INTRODUCTION 1 1.1 General background information 1 1.2 Objectives 1 1.3 Organization 1 CHAPTER 2. LITERATURE REVIEW 3 2.1 Traditional methods of heat stress in chickens 3 2.2 Image-based approaches to monitor poultry 3 2.3 Object detection using deep learning 4 2.4 Faster region-based convolutional neural network 4 CHAPTER 3. MATERIALS AND METHODS 5 3.1 Chicken coop 5 3.2 Embedded system for data acquisition 6 3.3 Imaging system calibration 6 3.4 Image collection and annotation 7 3.5 Automated chicken detection and localization 7 3.6 Individual chicken identification and movement tracking 10 3.7 Chicken drinking frequency 12 CHAPTER 4. RESULTS AND DISCUSSION 13 4.1 Variation in environmental and conditionals 13 4.2 Loss of model training 13 4.3 The performance of chicken detection 14 4.4 The performance of chicken movement tracking 16 4.5 Correlation between chicken activities to environmental factors 17 CHAPTER 5. CONCLUSION 20 REFERENCES 21 | |
| dc.language.iso | en | |
| dc.subject | 雞隻活動力 | zh_TW |
| dc.subject | 溫溼度指數 | zh_TW |
| dc.subject | 熱緊迫 | zh_TW |
| dc.subject | 快速區域卷積神經網路 | zh_TW |
| dc.subject | 嵌入式系統 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | Chicken activities | en |
| dc.subject | embedded system | en |
| dc.subject | deep learning | en |
| dc.subject | heat stress | en |
| dc.subject | temperature-humidity index (THI) | en |
| dc.subject | faster region-based convolutional neural network (Faster R-CNN) | en |
| dc.title | 利用深度卷積神經網路於雞隻活動力與溫溼度指數之監測 | zh_TW |
| dc.title | Monitoring chicken activity and temperature-humidity index using deep convolutional neural networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝廣文,鄭文皇,邱奕志,花凱龍 | |
| dc.subject.keyword | 雞隻活動力,深度學習,嵌入式系統,快速區域卷積神經網路,熱緊迫,溫溼度指數, | zh_TW |
| dc.subject.keyword | Chicken activities,deep learning,embedded system,faster region-based convolutional neural network (Faster R-CNN),heat stress,temperature-humidity index (THI), | en |
| dc.relation.page | 24 | |
| dc.identifier.doi | 10.6342/NTU201801694 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
