Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69170
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥甫
dc.contributor.authorTzu-Yuan Linen
dc.contributor.author林子淵zh_TW
dc.date.accessioned2021-06-17T03:10:01Z-
dc.date.available2023-08-19
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-07-19
dc.identifier.citationArlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Chen, Y. C., Hidayati, S. C., Cheng, W. H., Hu, M. C., & Hua, K. L. (2016, January). Locality constrained sparse representation for cat recognition. In International Conference on Multimedia Modeling (pp. 140-151). Springer, Cham.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2), 303-338.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
Girshick, R. (2015). Fast r-cnn. arXiv preprint arXiv:1504.08083.
Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 675-678). ACM.
Knerr, S., Personnaz, L., & Dreyfus, G. (1990). Single-layer learning revisited: a stepwise procedure for building and training a neural network. In Neurocomputing (pp. 41-50). Springer, Berlin, Heidelberg.
Kozakaya, T., Ito, S., Kubota, S., & Yamaguchi, O. (2009, November). Cat face detection with two heterogeneous features. In Image Processing (ICIP), 2009 16th IEEE International Conference on (pp. 1213-1216). IEEE.
Kumar, S., & Singh, S. K. (2014). Biometric recognition for pet animal. Journal of Software Engineering and Applications, 7(05), 470.
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807-814).
Parkhi, O. M., Vedaldi, A., Zisserman, A., & Jawahar, C. V. (2012, June). Cats and dogs. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 3498-3505). IEEE.
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99).
Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Josa a, 4(3), 519-524.
Yamada, A., Kojima, K., Kiyama, J., Okamoto, M., & Murata, H. (2011, January). Directional edge-based dog and cat face detection method for digital camera. In Consumer Electronics (ICCE), 2011 IEEE International Conference on (pp. 87-88). IEEE.
Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham.
Zhang, W., Sun, J., & Tang, X. (2008, October). Cat head detection-how to effectively exploit shape and texture features. In European Conference on Computer Vision (pp. 802-816). Springer, Berlin, Heidelberg.
Zhu, M. (2004). Recall, precision and average precision. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, 2, 30.
Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical chemistry, 39(4), 561-577.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69170-
dc.description.abstract在台灣,每年有3千多隻的狗和貓走失,丟失寵物對於主人來說是非常難過的,這些走失的寵物也可能會對動物收容所造成負擔。儘管植入寵物晶片一直是解決走失寵物問題的方法之一,但它可能會給寵物帶來健康問題(例如發炎反應和癌症)。因此,我們需要一種非侵入式的走失寵物識別方法。本研究利用非侵入式的臉部辨識方法來識別個體貓,拍攝了一個包含150隻不同的個體貓、共900張貓照片的數據集,使用卷積神經網絡偵測臉上的五官(例如眼睛、鼻子和嘴巴), 將五官的特徵利用特徵臉(Eigenface)量化後,使用支持向量機(Support Vector Machine)來進行辨識。本研究提出的方法達到了94.1%的識別準確度。zh_TW
dc.description.abstractIn Taiwan, there are more than 3 thousand dogs and cats missing every year. Losing pets could be extremely painful for owners. It also places burden on animal shelters in trying to return the pets to the owners. Although implanting microchips has always been a way to solve the missing pets problem, it may cause health problems (e.g., inflammatory reaction and cancer) to pets. Hence, a noninvasive approach for identifying missing pets is needed. This work proposed to identify cats noninvasively using face recognition. A database that contains 900 images of 150 different cats was developed. Facial parts (e.g., eyes, nose, and mouth) were identified using convolutional neural networks. The features of the facial parts (e.g., eigenface) were then qualified and were used for identifying the cats with support vector machines. The proposed method achieves an identification accuracy of 94.1 %..en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:10:01Z (GMT). No. of bitstreams: 1
ntu-107-R03631030-1.pdf: 2698502 bytes, checksum: a6a0fcf53e06c8a68aea7c9361fd302f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTABLE OF CONTENTS
ACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Objectives 1
1.3 Organization 2
CHAPTER 2. LITERATURE REVIEW 3
2.1 Traditional methods of cat face detection 3
2.2 Advanced detection approaches using deep learning 3
2.3 Conventional researches of cat identification 4
CHAPTER 3. MATERIALS AND METHODS 5
3.1 Dataset preparation 5
3.2 Face detection and facial parts localization 6
3.3 Face alignment 8
3.4 Facial feature extraction 9
3.5 Feature representation using Eigenface 10
3.6 Cat identification 11
CHAPTER 4. RESULTS 12
4.1 The loss of the face detection and facial parts localization models during training 12
4.2 The performance of the developed face detection and facial parts localization models 13
4.3 The performance of cat identification 15
CHAPTER 5. CONCLUSION 17
REFERENCES 18
dc.language.isoen
dc.subject貓zh_TW
dc.subject卷積神經網絡zh_TW
dc.subject支持向量機zh_TW
dc.subject人臉識別zh_TW
dc.subjectcaten
dc.subjectConvolutional neural networken
dc.subjectface recognitionen
dc.subjectsupport vector machineen
dc.title利用深度學習辨識貓臉zh_TW
dc.titleCat face recognition using deep learningen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭文皇,花凱龍,王尚麟
dc.subject.keyword卷積神經網絡,貓,人臉識別,支持向量機,zh_TW
dc.subject.keywordConvolutional neural network,cat,face recognition,support vector machine,en
dc.relation.page20
dc.identifier.doi10.6342/NTU201801677
dc.rights.note有償授權
dc.date.accepted2018-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved