請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69152完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李後晶(How-Jing Lee) | |
| dc.contributor.author | Tien-Hsien Lin | en |
| dc.contributor.author | 林典憲 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:09:47Z | - |
| dc.date.available | 2018-07-26 | |
| dc.date.copyright | 2018-07-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-20 | |
| dc.identifier.citation | Akasaka S, Sasaki K, Harano K, Nagao T. 2010. Dopamine enhances locomotor activity for mating in male honeybees (Apis mellifera L.). J Insect Physiol 56: 1160-1166.
Allen JM, Van Kummer BH, Cohen RW. 2011. Dopamine as an anorectic neuromodulator in the cockroach Rhyparobia maderae. J Exp Biol 214: 3843-3849. Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN, Mercer AR. 2007. Queen pheromone modulates brain dopamine function in worker honey bees. Proc Natl Acad Sci USA 104: 2460-2464. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6: 544-556. Beninger RJ. 1983. The role of dopamine in locomotor activity and learning. Brain Res 287: 173-196. Bussi IL, Levín G, Golombek DA, Agostino PV. 2014. Involvement of dopamine signaling in the circadian modulation of interval timing. Eur J Neurosci 40: 2299-2310. Chaudhury MF, Dhadialla TS. 1976. Evidence of hormonal control of ovulation in tsetse flies. Nature 260: 243-244. Cirelli C, Bushey D. 2008. Sleep and wakefulness in Drosophila melanogaster. Annals of the New York Academy of Sciences 1129: 323-329. Cooper RL, Neckameyer WS. 1999. Dopaminergic modulation of motor neuron activity and neuromuscular function in Drosophila melanogaster. Comp Biochem Physiol B Biochem Mol Biol 122: 199-210. Denlinger DL, Chaudhury MF, Dhadialla TS. 1978. Cyclic AMP is a likely mediator of ovulation in the tsetse fly. Experientia 34: 1296-1297. Draper I, Kurshan PT, McBride E, Jackson FR, Kopin AS. 2007. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67: 378-393. Dubowy C, Sehgal A. 2017. Circadian rhythms and sleep in Drosophila melanogaster. Genetics 205: 1373-1397. Eban-Rothschild A, Bloch G. 2012. Social influences on circadian rhythms and sleep in insects. Adv Genet 77: 1-32. Glossop NR, Lyons LC, Hardin PE. 1999. Interlocked feedback loops within the Drosophila circadian oscillator. Science 286:766-768. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer JH, Albrecht U. 2008. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18: 678–683. Harano KI, Sasaki M, Nagao T, Sasaki KEN. 2008. Dopamine influences locomotor activity in honeybee queens: implications for a behavioural change after mating. Physiol Entomol 33: 395-399. Helfrich-Forste C. 1998. Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J Comp Physiol A 4: 435-453. Imbesi M, Yildiz S, Dirim Arslan A, Sharma R, Manev H, Uz T. 2009. Dopamine receptor-mediated regulation of neuronal ‘clock’ gene expression. Neuroscience 158: 537–544. Kawarai T, Kawakami H, Yamamura Y, Nakamura S. 1997. Structure and organization of the gene encoding human dopamine transporter. Gene 195: 11–18. King SS, Campbell AG, Dille EA, Roser JF, Murphy LL, Jones KL. 2005. Dopamine receptors in equine ovarian tissues. Domest Anim Endocrinol 28: 405-415. Krishnan N, Davis AJ, Giebultowicz JM. 2008. Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem Biophys Res Commun 374: 299-303. Kula-Eversole E, Nagoshi E, Shang Y, Rodriguez J, Allada R, Rosbash M. 2010. Surprising gene expression patterns within and between PDF-containing circadian neurons in <em>Drosophila</em>. Proc Natl Acad Sci USA 107: 13497-13502. Lee CM, Su MT, Lee HJ. 2009. Pigment dispersing factor: an output regulator of the circadian clock in the German cockroach. J Biol Rhythms 24: 35-43. Lee HJ, Wu YL. 1994. Mating effects on the feeding and locomotion of the German cockroach, Blattella germanica. Physiol Entomol 19: 39-45 Leppla NC, Koehler PG, Agee HR. 1989. Circadian rhythms of the German cockroach (Dictyoptera: Blattellidae): Locomotion in response to different photoperiods and wavelengths of light. J Insect Physiol 35: 63-66. Lin TM, Lee HJ. 1996. The expression of locomotor circadian rhythm in female German cockroach, Blattella germanica (L.). Chronobiol Int 13: 81-91. Manoogian ENC, Panda S. 2017. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 39: 59-67. Mayerhofer A, Fritz S, Grunert R, Sanders SL, Duffy DM, Ojeda SR, Stouffer RL. 2000. D1-Receptor, DARPP-32, and PP-1 in the primate corpus luteum and luteinized granulosa cells: evidence for phosphorylation of DARPP-32 by dopamine and human chorionic gonadotropin. J Clin Endocrinol Metab 85: 4750-4757. Meck WH. 1996. Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res. 3: 227–242. Meireles-Filho ACA, Kyriacou CP. 2013. Circadian rhythms in insect disease vectors. Memórias do Instituto Oswaldo Cruz 108: 48-58. Mercer AR, Menzel R. 1982. The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee Apis mellifera. J Comp Physiol 145: 363-368. Merrow M, Brunner M, Roenneberg T. 1999. Assignment of circadian function for the Neurospora clock gene frequency. Nature 399: 584-586 Mesnier M. 1981. Study of the ovulation process in the stick insect, Clitumnus extradentatus. 425-433 pp. Miller T. 1968. Role of cardiac neurons in the cockroach heartbeat. J Insect Phsiol 14: 1265-1275 Miyatake T. 2002. Circadian rhythm and time of mating in Bactrocera cucurbitae (Diptera: Tephritidae) selected for age at reproduction. Heredity 88: 302-306. Neckameyer WS. 1996. Multiple roles for dopamine in Drosophila development. Dev Biol 176: 209-219. Parillo F, Catone G, Gobbetti A, Zerani M. 2013. Cell localization of ACTH, dopamine, and GnRH receptors and PPAR gamma in bovine corpora lutea during diestrus. Parillo F, Maranesi M, Mignini F, Marinelli L, Di Stefano A, Boiti C, Zerani M. 2014. Evidence for a dopamine intrinsic direct role in the regulation of the ovary reproductive function: in vitro study on rabbit corpora lutea. PLOS ONE 9: e104797. Pendleton RG, Robinson N, Roychowdhury R, Rasheed A, Hillman R. 1996. Reproduction and development in Drosophila are dependent upon catecholamines. Life Sci 59: 2083-2091. Refinetti R, Lissen GC, Halberg F. 2007. Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res 38:275-325. Sakai T, Ishida N. 2001. Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc Natl Acad Sci USA 98: 9221-9225. Sasaki K. 2016. Nutrition and dopamine: An intake of tyrosine in royal jelly can affect the brain levels of dopamine in male honeybees (Apis mellifera L.). J Insect Physiol 87:45-52. Seay DJ, Thummel CS. 2011. The circadian clock, light, and cryptochrome regulate feeding and metabolism in Drosophila. J Biol Rhythms 26: 497-506. Shafer OT, Yao Z. 2014. Pigment-dispersing factor signaling and circadian rhythms in insect locomotor activity. Curr Opin Insect Sci 1: 73-80. Shumay E, Fowler JS, Wang GJ, Logan J, Alia-Klein N, Goldstein RZ, Maloney T, Wong C, Volkow ND. 2012. Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl Psychiatry 2: e86. Tataroglu O, Emery P. 2014. Studying circadian rhythms in Drosophila melanogaster. Methods (San Diego, Calif.) 68: 140-150. Weber M, Lauterburg T, Tobler I, Burgunder JM. 2004. Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci Lett 358: 17–20. Whitehead K, Pan M, Masumura K-i, Bonneau R, Baliga NS. 2009. Diurnally entrained anticipatory behavior in Archaea. PLOS ONE 4: e5485. Wicker-Thomas C, Hamann M. 2008. Interaction of dopamine, female pheromones, locomotion and sex behavior in Drosophila melanogaster. J Insect Physiol 54: 1423-1431. Xu K, Zheng X, Sehgal A. 2008. Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8: 289-300. Yamamoto S, Seto ES. 2014. Dopamine dynamics and signaling in Drosophila: An overview of genes, drugs and behavioral paradigms. Exp Anim 63: 107-119. Yoon SO, Chikaraishi DM. 1992. Tissue-specific transcription of the rat tyrosine hydroxylase gene requires synergy between an AP-1 motif and an overlapping E box-containing dyad. Neuron 9: 55–67. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69152 | - |
| dc.description.abstract | 日周律動是一個周期大約為24小時且存在於大部分的生物體中的生物時鐘。在德國蟑螂雌成蟲的性接受期中,具有日周律動的活動行為被找尋配偶的活動行為所遮蓋並且呈現整天均勻分布,然而德國蟑螂雄成蟲找尋交配的活動行為仍然局限於夜間。由於多巴胺(dopamine)是一種神經傳導物質,參與從腦到肌肉的訊息傳導,最後影響到活動行為,故我們推測多巴胺可能是日周律動活動行為的遮蓋因子。此外,多巴胺在昆蟲內扮演非常重要的角色,它參與學習、取食、活動行為及生殖的調控。酪胺酸羥化酶(tyrosine hydroxylase)及多巴脫羧酶(dopa decarboxylase)是生物體內合成多巴胺的必要酵素,並且在雄成蟲及雌成蟲中,它們的mRNA表現量與活動行為的模式相符合。在雄成蟲的頭中,酪胺酸羥化酶及多巴脫羧酶的mRNA表現量均表現日周律動,在雌成蟲的頭中,則沒有呈現日周律動。另外,酪胺酸羥化酶及多巴脫羧酶的mRNA表現量在性接受及非性接受期雌蟲的卵巢並無顯著差異,且多巴胺接受器1及2的mRNA在非性接受期雌蟲的卵巢沒有偵測到。在注射多巴胺及多巴胺拮抗劑至雄成蟲和雌成蟲體內後,活化劑造成總活動量的上升,拮抗劑造成總活動量的下降,但此效果只能維持一天。除此之外,注射活化劑及拮抗劑後儘管可以改變總活動量,卻不改變活動量的日周律動表現。這些結果顯示多巴胺確實參與較下游活動行為的調控,但不影響生物時鐘的表現。 | zh_TW |
| dc.description.abstract | Circadian clock is a 24-hour internal clock existing in almost every organism on Earth. The locomotor circadian rhythm of virgin female adults of the German cockroach is masked by increasing mate-finding activity and even-distributed throughout the day during sexually receptive period, even though male adults still cofine their mate-finding activity at night. Since dopamine (DA) is a neurotransmitter involving in signal transduction from brain to muscle, it serves as a potential masking factor on locomotor circadian rhythm. Furthermore, it plays multiple roles in the regulation of learning, feeding, locomotion and reproduction in insects. In the synthesized cascade of dopamine, tyrosine hydroxylase and dopa decarboxylase are the essential enzymes, and circadian rhythmicity of their mRNA expression levels are consistent with locomotor activity patterns of male and female adults. The mRNA expression level of tyrosine hydroxylase and dopa decarboxylase in male adults displayed circadian rhythm, but none of them displayed circadian rhythm in virgin female adults. Moreover, tyrosine hydroxylase and dopa decarboxylase mRNA expression levels had no significant difference between sexually and non-sexually receptive female adults’ ovary and dopamine receptor 1 and receptor 2 mRNA were not detected in the non-sexually receptive female adults’ ovary. The effect of extra dopamine and antagonist (cis(Z)-flupenthixol) on locomotor activities of male and female adults only last for one day. In addition, extra dopamine and antagonist injection did not alter the expression of circadian rhythm in both male and female adults regardless the changes in total locomotor activities. These results suggest that dopamine does participate in downstream regulation of locomotion without affecting the circadian clock. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:09:47Z (GMT). No. of bitstreams: 1 ntu-107-R05632012-1.pdf: 3189694 bytes, checksum: 8f68c86f2429a98f7007a93c84adfced (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………..……………………...………...i
ACKNOWLEDGEMENTS…..……………………...……....……….....ii 中文摘要……………...……………………………………...…………iii ABSTRACT…………………………………………………………….......…………..iv CONTENTS…………………………………………………………….......…………..vi LIST OF FIGURES……….………………………………………………...…..……..viii LIST OF TABLES……………...………………………………………...…..…………..x INTRODUCTION.…..………....…………………………………………...…………...1 MATERIALS AND METHODS ………...…………….………………..5 Insect culture………………………………………………………………..…5 Quantitative real time polymerase chain reaction (qRT-PCR) analysis ….5 Ligand (dopamine) and antagonist (cis-flupenthixol) injection …………7 Measurements of locomotion……………………...…….…...8 Statistics ………............……………………….……...………9 RESULTS …………...………....…………………………...…...…...10 Circadian regulation of dopamine cascade……….…...…....….10 Relationship between dopamine and locomotion..........……………………....…...12 DISCUSSION ….…...………....…………..…...15 REFFERENCES …………...………....……………......…19 APPENDIX…………………………………….…….47 Dopamine (DA) synthesized pathway and signaling in Drosophila melanogaster...47 SUPPLEMENTARY MATERIALS…………………………….48 DopR1 DNA sequence……………………………………….48 DopR2 DNA sequence………………….………50 | |
| dc.language.iso | en | |
| dc.subject | 掩蓋效應 | zh_TW |
| dc.subject | 日週律動 | zh_TW |
| dc.subject | 卵巢發育 | zh_TW |
| dc.subject | dopa decarboxylase | zh_TW |
| dc.subject | tyrosine hydroxylase | zh_TW |
| dc.subject | Circadian rhythm | en |
| dc.subject | masking effects | en |
| dc.subject | tyrosine hydroxylase | en |
| dc.subject | dopa decarboxylase | en |
| dc.subject | ovary development | en |
| dc.title | 多巴胺參與調控德國蜚蠊活動行為 | zh_TW |
| dc.title | Dopamine participating in locomotor regulation of the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡志偉(Chi-Wei Tsai),王琄嬋(Chuan-Chan Wang),楊永裕(Yung-Yu Yang) | |
| dc.subject.keyword | 日週律動,掩蓋效應,tyrosine hydroxylase,dopa decarboxylase,卵巢發育, | zh_TW |
| dc.subject.keyword | Circadian rhythm,masking effects,tyrosine hydroxylase,dopa decarboxylase,ovary development, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201801721 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
