Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69144
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宗傑(Tsung-Chieh Yang)
dc.contributor.authorChih-Yuan Hsuen
dc.contributor.author許植淵zh_TW
dc.date.accessioned2021-06-17T03:09:40Z-
dc.date.available2020-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-21
dc.identifier.citation[1] Zarb GA, Hobkirk J, Eckert S, Jacob R. Prosthodontic Treatment for Edentulous Patients: Complete Dentures and Implant-Supported Prostheses. 13 ed: Elsevier Health Sciences; 2013.
[2] Murray MD, Darvell BW. The evolution of the complete denture base. Theories of complete denture retention—a review. Part 1. Austral Dent J. 1993;38:216-9.
[3] MacEntee MI, Walton JN. The economics of complete dentures and implant-related services: a framework for analysis and preliminary outcomes. J Prosthet Dent. 1998;79:24-30.
[4] Bilhan H, Erdogan O, Ergin S, Celik M, Ates G, Geckili O. Complication rates and patient satisfaction with removable dentures. J Adv Prosthodont. 2012;4:109-15.
[5] Atwood DA. Final report of the workshop on clinical requirements of ideal denture base materials. J Prosthet Dent. 1968;20:101-5.
[6] Anderson G, Schulte J, Arnold T. Dimensional stability of injection and conventional processing of denture base acrylic resin. J Prosthet Dent. 1988;60:394-8.
[7] Woelfel JB, Paffenbarger GC, Sweeney WT. Dimensional changes occurring in dentures during processing. J Am Dent Assoc. 1960;61:413-30.
[8] Takamata T, Setcos JC. Resin denture bases: review of accuracy and methods of polymerization. Int J Prosthodont. 1989;2:555-62.
[9] Turd MD, Lang BR, Wilcox DE, Meiers JC. Direct measurement of dimensional accuracy with three denture-processing techniques. Int J Prosthodont. 1992;5:367-72.
[10] Kawara M, Komiyama O, Kimoto S, Kobayashi N, Kobayashi K, Nemoto K. Distortion Behavior of Heat-activated Acrylic Denture-base Resin in Conventional and Long, Low-temperature Processing Methods. J Dent Res. 1998;77:1446-53.
[11] Ayman AD. The residual monomer content and mechanical properties of CADCAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron Physician. 2017;9:4766-72.
[12] Maeda Y, Minoura M, Tsutsumi S, Okada M, Nokubi T. A CAD/CAM system for removable denture. Part I: Fabrication of complete dentures. Int J Prosthodont. 1994;7:17-21.
[13] Kawahata N, Ono H, Nishi Y, Hamano T, Nagaoka E. Trial of duplication procedure for complete dentures by CAD/CAM. J Oral Rehabil. 1997;24:540-8.
[14] Kattadiyil M, Goodacre C, Baba N. CAD/CAM complete dentures: a review of two commercial fabrication systems. J Calif Dent Assoc. 2013;41:407-16.
[15] Bilgin MS, Erdem A, Aglarci OS, Dilber E. Fabricating Complete Dentures with CAD/CAM and RP Technologies. J Prosthodont. 2015;7:576-9.
[16] Bilgin MS, Baytaroğlu EN, Erdem A, Dilber E. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication. Eur J Dent. 2016;10:286-91.
[17] Sun Y, Lu P, Wang Y. Study on CAD&RP for removable complete denture. Comput Methods Programs Biomed. 2009;93:266-72.
[18] Chen H, Wang H, Lv P, Wang Y, Sun Y. Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture. Biomed Res Int. 2015;2015.
[19] Inokoshi M, Kanazawa M, Minakuchi S. Evaluation of a complete denture trial method applying rapid prototyping. Dent Mater J. 2012;31:40-6.
[20] Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res. 2016;60:72-84.
[21] Goodacre CJ, Garbacea A, Naylor WP, Daher T, Marchack CB, Lowry J. CAD/CAM fabricated complete dentures: concepts and clinical methods of obtaining required morphological data. J Prosthet Dent. 2012;107:34-46.
[22] Han W, Li Y, Zhang Y, lv Y, Zhang Y, Hu P et al. Design and fabrication of complete dentures using CAD/CAM technology. Medicine. 2017;96:e5435.
[23] Bidra AS, Taylor TD, Agar JR. Computer-aided technology for fabricating complete dentures: Systematic review of historical background, current status, and future perspectives. J Prosthet Dent. 2013;109:361-6.
[24] Yamamoto S, Kanazawa M, Hirayama D, Nakamura T, Arakida T, Minakuchi S. In vitro evaluation of basal shapes and offset values of artificial teeth for CAD/CAM complete dentures. Comput Biol Med. 2016;68:84-9.
[25] Baba NZ. Materials and processes for CAD/CAM complete denture fabrication. Current Oral Health Reports. 2016;3:203-8.
[26] Steinmassl P-A, Klaunzer F, Steinmassl O, Dumfahrt H, Grunert I. Evaluation of Currently Available CAD/CAM Denture Systems. Int J Prosthodont. 2017;30:116-122.
[27] Wimmer T, Gallus K, Eichberger M, Stawarczyk B. Complete denture fabrication supported by CAD/CAM. J Prosthet Dent. 2016;115:541-6.
[28] Kattadiyil MT, AlHelal A. An update on computer-engineered complete dentures: A systematic review on clinical outcomes. J Prosthet Dent. 2017;117:478-85.
[29] Kattadiyil MT, Jekki R, Goodacre CJ, Baba NZ. Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J Prosthet Dent. 2015;114:818-25.
[30] Schwindling FS, Stober T. A comparison of two digital techniques for the fabrication of complete removable dental prostheses: A pilot clinical study. J Prosthet Dent. 2016;116:756-63.
[31] Kattadiyil MT, AlHelal A, Goodacre BJ. Clinical complications and quality assessments with computer-engineered complete dentures: A systematic review. J Prosthet Dent. 2017;117:721-8.
[32] Lee C-J, Bok S-B, Bae J-Y, Lee H-H. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods. Dent Mater J. 2010;29:411-7.
[33] Zissis A, Huggett R, Harrison A. Measurement methods used for the determination of dimensional accuracy and stability of denture base materials. J Dent. 1991;19:199-206.
[34] Harrison A, Huggett R, Zissis A. Measurements of dimensional accuracy using linear and scanning profile techniques. Int J Prosthodont. 1992;5.
[35] Kim MJ, Kim CW. A comparative study on the dimensional change of the different denture bases. J Korean Acad Prosthodont. 2006;44:712-21.
[36] Artopoulos A, Juszczyk AS, Rodriguez JM, Clark RK, Radford DR. Three-dimensional processing deformation of three denture base materials. J Prosthet Dent. 2013;110:481-7.
[37] Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent. 2016;116:249-56.
[38] Srinivasan M, Cantin Y, Mehl A, Gjengedal H, Müller F, Schimmel M. CAD/CAM milled removable complete dentures: an in vitro evaluation of trueness. Clin Oral Investig. 2016;21:2007-19.
[39] Consani R, Domitti SS, Barbosa R, Consani S. Effect of commercial acrylic resins on dimensional accuracy of the maxillary denture base. Braz Dent J. 2002;13:57-60.
[40] Ganzarolli SM, de Mello JA, Shinkai RS, Del Bel Cury AA. Internal adaptation and some physical properties of methacrylate-based denture base resins polymerized by different techniques. J Biomed Mater Res B Appl Biomater. 2007;82:169-73.
[41] Anderson GC, Schulte JK, Arnold TG. Dimensional stability of injection and conventional processing of denture base acrylic resin. J Prosthet Dent. 1988;60:394-8.
[42] Anthony DH, Peyton FA. Dimensional accuracy of various denture-base materials. J Prosthet Dent. 1962;12:67-81.
[43] Goodkind RJ, Schulte RC. Dimensional accuracy of pour acrylic resin and conventional processing of cold-curing acrylic resin bases. J Prosthet Dent. 1970;24:662-8.
[44] Takamata T, Setcos JC. Resin denture bases: review of accuracy and methods of polymerization. Int J Prosthodont. 1989;2:555-62.
[45] Mainieri ET, Boone ME, Potter RH. Tooth movement and dimensional change of denture base materials using two investment methods. J Prosthet Dent. 1980;44:368-73.
[46] Takamata T, Setcos JC, Phillips RW, Boone ME. Adaptation of acrylic resin dentures as influenced by the activation mode of polymerization. J Am Dent Assoc. 1989;119:271-6.
[47] Jagger RG, Milward PJ, Jagger DC, Vowles RW. Accuracy of adaptation of thermoformed poly(methyl methacrylate). J Oral Rehabil. 2003;30:364-8.
[48] Ono T, Kita S, Nokubi T. Dimensional accuracy of acrylic resin maxillary denture base polymerized by a new injection pressing method. Dent Mater J. 2004;23:348-52.
[49] Ganzarolli S, Rached R, Garcia R, Del Bel Cury A. Effect of cooling procedure on final denture base adaptation. J Oral Rehabil. 2002;29:787-90.
[50] Sartori EA, Schmidt CB, Mota EG, Hirakata LM, Shinkai RS. Cumulative effect of disinfection procedures on microhardness and tridimensional stability of a poly(methyl methacrylate) denture base resin. J Biomed Mater Res B Appl Biomater. 2008;86:360-4.
[51] Darvell B, Clark R. Prosthetics: The physical mechanisms of complete denture retention. Br Dent J. 2000;189:248-52.
[52] Windecker D, Dippel M. Comparative studies of the exactness of fit of maxillary complete dentures with resin and cast metal bases. Quintessence Dent Technol. 1981;5:427-30.
[53] Jacobson TE, Krol AJ. A contemporary review of the factors involved in complete denture retention, stability, and support. Part I: Retention. J Prosthet Dent. 1983;49:5-15.
[54] Edwards LF, Boucher CO. Anatomy of the Mouth in Relation to Complete Dentures. J Am Dent Assoc. 1942;29:331-45.
[55] Jacobson TE, Krol AJ. A contemporary review of the factors involved in complete dentures. Part III: Support. J Prosthet Dent. 1983;49:306-13.
[56] Craig RG PJ. Restorative Dental Materials. 11 ed: St. Louis, MO, Mosby, ; 2002.
[57] Barsoum WM, Eder J, Asgar K. Evaluating the accuracy of fit of aluminum-cast denture bases and acrylic resin bases with a surface meter. J Am Dent Assoc. 1968;76:82-8.
[58] Baemmert RJ, Lang BR, Barco Jr MT, Billy EJ. The Effects of Denture Teeth on the Dimensional Accuracy of Acrylic Resin Denture Bases. Int J Prosthodont. 1990;3.
[59] Woelfel J, Paffenbarger G, Sweeney W. Dimensional changes occurring in artificial dentures. Int Dent J. 1959;9:451-60.
[60] Garfunkel E. Evaluation of dimensional changes in complete dentures processed by injection-pressing and the pack-and-press technique. J Prosthet Dent. 1983;50:757-61.
[61] Parvizi A, Lindquist T, Schneider R, Williamson D, Boyer D, Dawson DV. Comparison of the dimensional accuracy of injection-molded denture base materials to that of conventional pressure-pack acrylic resin. J Prosthodont. 2004;13:83-9.
[62] McLaughlin JB, Ramos V, Jr., Dickinson DP. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology. J Prosthodont. 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69144-
dc.description.abstract實驗目的: 本研究目的在檢測數位化技術與傳統樹脂熱聚合方式製作全口活動義齒於義齒基底密合度 (denture base adaptation)之差異性。
材料與方法: 將上下顎全口無牙標準模型翻模後製作石膏模型,在上顎的前方齒槽嵴 (anterior ridge crest)中心點及兩側粗隆 (tuberosity),下顎的前方齒槽嵴 (anterior ridge crest)中心點及兩側後方齒槽嵴 (posterior ridge crest)埋入直徑4mm的金屬球並翻製成鈷鉻合金 (cobalt-chrome alloy)金屬模型,作為後續實驗的參考模型。以3D桌掃機 (D900 3D scanner, 3shape, Copenhagen, Denmark)掃描金屬參考模並以軟體設計厚度為2mm之義齒基底,後續以CAD/CAM切削 (POLYWAX組、YAMAHACHI組)、3D列印 (BV005組、NextDent組)、樹脂注射成型 (injection molding)以及壓縮成型 (Pack & Press)熱聚合方式進行義齒基底之製作,每組上下顎各製作10個 (共計120個)。義齒基底密合度之測試方式為:1. 以5公斤重垂直力施加並測量義齒基底與金屬參考模型之間之矽膠印模材於訂定參考點之厚度。2. 掃描各組之義齒基底並與金屬參考模型掃描檔影像疊合分析組織面 (intaglio surface)。統計方式使用單因子變異數分析 (One-way ANOVA),再以Bonferroni法作事後比較檢定 (post-hoc test) ,有意義水準設於p<0.05。
實驗結果: 若以印模材厚度表示義齒基底和模型之間的間隙,在上顎的結果顯示
在各組別中,間隙最小都出現在兩側粗隆 (tuberosity) (0.193~0.452mm),而最大出現在後障 (post dam) (0.684~1.833mm);根據不同義齒基底製作方式的結果顯示,CAD/CAM切削產生的間隙最小,而3D列印產生的間隙比樹脂熱聚合方式來的大。根據數位影像疊合方式檢測的結果顯示:在六個參考位置中有五個位置顯示CAD/CAM切削義齒基底的真實度 (trueness)最大,Pack & Press在其中一個位置 (正中顎縫)的真實度最大。
在下顎的結果顯示:3D列印 (BV005組)產生的間隙最小,其次是CAD/CAM (POLYWAX),然而3D列印 (NextDent組)跟CAD/CAM (YAMAHACHI組)表現的結果是類似的。樹脂熱聚合方式不論是注射成型 (injection molding)還是壓縮成型 (Pack & Press)均顯示出最大的間隙。根據數位影像疊合方式檢測的結果顯示:在五個參考位置中,其中有三個位置顯示CAD/CAM切削義齒基底的真實度最大,Injection在其中兩個位置的真實度最大。
根據數位影像疊合方式檢測的結果,不論上下顎均顯示:CAD/CAM切削、注射成型 (injection molding)及壓縮成型 (Pack & Press)方式在義齒組織面的真實度沒有顯著差異,然而3D列印方式顯示出最低的真實度。
結論: 在本實驗有限的條件下,對於全口義齒基底在密合度檢測的結果,使用薄膜厚度測量方式測量參考位置間隙大小,CAD/CAM切削方式不論是在上顎或下顎,產生的間隙都小於樹脂熱聚合方式。3D列印方式在下顎產生的間隙小於樹脂熱聚合方式,而在上顎的話表現與樹脂熱聚合方式可以得到相似的結果。使用數位影像疊合方式檢測下,CAD/CAM切削方式製作義齒基底的組織面真實度和樹脂熱聚合方式沒有顯著差異,而兩種方式相較3D列印方式都有較高的真實度。
zh_TW
dc.description.abstractObjective: The purpose of this in vitro study was to compare the denture base adaptation of conventionally manufactured (Pack & Press, injection molding), 3D printing and CAD/CAM milled techniques for fabricating complete dentures to determine which process produces the most accurate adaptation.
Materials and Methods: Two edentulous maxillary and mandibular models were fabricated by cobalt-chrome alloy. Three reference spheres (4mmx4mmx4mm) were added on the bilateral tuberosities, anterior crest at the midline at maxillary ridge and on the bilateral posterior crests, anterior crest at the midline at mandibular ridge respectively. The models were scanned by 3Shape D900 scanner (3Shape, Copenhagen, Denmark) and designed with a 2mm thickness denture base (3Shape CAD Design Software). Denture bases were fabricated by four different manufacturing techniques and materials: CAD/CAM milled (POLYWAX & YAMAHACHI), 3D printing (BV005 & NextDent), injection molding and Pack & Press. Denture base adaptation was assessed by both conventional and digital method. In conventional way, coated the internal surface of each denture base with silicone impression material and placed onto the master model under a 5 kgf axial load. Adaptation of the reference location was assessed by measuring the thickness of intervening layer of silicone impression material with the dial thickness gauge (547-400S, Mitutoyo Corp., Tokyo, Japan) between the base and the master model. In digital way, the trueness of the intaglio surface was assessed by superimposition of the test and reference scanning data.
Results: At maxilla, according to conventional method, no matter which technique was used the bilateral tuberosities showed the minimum thickness and the post dam area showed the maximum thickness. The CAD/CAM milled technique had the most accurate adaptation on the reference area. The 3D printing group showed larger gap than conventional group.
At mandible, according to conventional method, 3D printing (BV005) group showed the best adaptation, followed by CAD/CAM (POLYWAX) group. Heat cured resin method had the least adapted result among all techniques.
According to digital superimposition, the overall results showed that there was no significant difference in the trueness of the intaglio surfaces between CAD/CAM milled, injection molding and pack & press groups. 3D printing group showed the lowest trueness among all groups.
Conclusions: Within the limitation of the study, the conclusions are
The CAD/CAM milled and conventional heat cured methods were more accurate denture fabrication techniques when compared with 3D printing denture base processing technique.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:09:40Z (GMT). No. of bitstreams: 1
ntu-107-R04422021-1.pdf: 96167633 bytes, checksum: 55b8c57f4cebc4a9a5fbe9fa28a07e55 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中 文 摘 要 I
Abstract III
目 錄 VI
第一章 文獻回顧 1
1.1 傳統方式製作全口活動義齒優缺點 2
1.2 數位方式製作全口活動義齒流程 3
1.3 數位方式製作全口活動義齒的臨床結果評估 13
1.4 全口活動義齒密合度評估方法 14
第二章 研究動機與目的 16
第三章 材料與方法 17
一、實驗用模型製作: 17
二、實驗用義齒基底製作: 18
三、施力設備之設置: 21
四、全口義齒基底密合度之檢測: 22
五、實驗數據分析及統計方法 25
第四章 實驗結果 26
第五章 討論 58
5.1實驗模型的製作 59
5.2 義齒基底密合度的檢測 60
5.3 義齒基底密合度參考位置的選擇 62
5.4 CAD/CAM切削義齒基底 63
5.5 3D列印義齒基底 65
5.6 熱聚合樹脂義齒基底 68
5.7 不同方式製作義齒基底密合度的探討 69
5.8 實驗的誤差與限制 71
第六章 結論 74
第七章 未來展望 75
參考文獻 155
dc.language.isozh-TW
dc.subject真實度zh_TW
dc.subject義齒基底密合度zh_TW
dc.subject全口活動義齒zh_TW
dc.subject熱聚合樹脂zh_TW
dc.subject3D列印zh_TW
dc.subjectCAD/CAM切削zh_TW
dc.subjecttruenessen
dc.subject3D printingen
dc.subjectinjection moldingen
dc.subjectpack and pressen
dc.subjectcomplete dentureen
dc.subjectdenture base adaptationen
dc.subjectCAD/CAM milleden
dc.title傳統樹脂熱聚合方式與數位方式製作全口活動義齒基底密合度之比較:體外實驗zh_TW
dc.titleEvaluation of Denture Base Adaptation by Conventional Heat-cured PMMA Method and Digital Method: An In Vitro Studyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor林立德(Li-Deh Lin)
dc.contributor.oralexamcommittee洪志遠(Chi-Yuan Hong)
dc.subject.keywordCAD/CAM切削,3D列印,熱聚合樹脂,全口活動義齒,義齒基底密合度,真實度,zh_TW
dc.subject.keywordCAD/CAM milled,3D printing,injection molding,pack and press,complete denture,denture base adaptation,trueness,en
dc.relation.page159
dc.identifier.doi10.6342/NTU201801765
dc.rights.note有償授權
dc.date.accepted2018-07-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
93.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved