請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69140完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹承礎(Seng-Cho T. Chou) | |
| dc.contributor.author | Yu-Shan Lin | en |
| dc.contributor.author | 林于珊 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:09:37Z | - |
| dc.date.available | 2021-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-22 | |
| dc.identifier.citation | Ailawadi, K. L. (2006). Promotion Profitability for a Retailer: The Role of Promotion, Brand, Category, and Store Characteristics. Journal of Marketing Research, 43(4), pp. 518-535.
Ailawadi, K. L. (2014). Sales Promotions. In R. S. Neslin, The History of Marketing Science (pp. 463-497). Singapore: World Scientific Publishing. Arora, N. &. (2007). Embedded premium promotion: Why it works and how to make it more effective. Marketing Science, 26(4), pp. 514-531. Bawa, K. &. (2004). The effects of free sample promotions on incremental brand sales. Marketing Science, 23(3), pp. 345-363. Bell, D. R. (1999). The Decomposition Of Promotional Response: An Empirical Generalization. Marketing Science, 18(4), pp. 504-526. Bemmaor, A. C. (1991). Measuring the short-term effect of in-store promotion and retail advertising on brand sales: A factorial experiment. Journal of Marketing Research, pp. 202-214. Blattberg, R. C. (1987). How retail price promotions work: empirical results. University of Chicago Center for Research in Marketing. Blattberg, R. C. and Neslin, S. A. (1990). Sales promotion: Concepts, methods, and strategies. Prentice Hall. Campbell, L. &. (1990). Framing and Sales Promotions: The Characteristics of a ″Good Deal ″. Journal of Consumer Marketing, 7(4), pp. 25-31. Chandon, P. W. (2000). A benefit congruency framework of sales promotion effectiveness. Journal of marketing, 64(4), pp. 65-81. Duncan, D. J. (1977). Modern retailing management: basic concepts and practices. RD Irwin. Garbarino, E. &. (1999). The different roles of satisfaction, trust, and commitment in customer relationships. the Journal of Marketing, pp. 70-87. Gedenk, K. &. (1999). he role of retail promotion in determining future brand loyalty: Its effect on purchase event feedback. Journal of retailing, 95(4), pp. 433-459. Hellier, P. K. (2003). Customer repurchase intention: A general structural equation model. European journal of marketing, 37(11/12), pp. 1762-1800. Hierarchical Clustering Algorithms. (n.d.). Retrieved from http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html Huang, Z. &. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), pp. 446-452. Huang, Z. (1997). . Clustering large data sets with mixed numeric and categorical values. Proceedings of the 1st pacific-asia conference on knowledge discovery and data mining,(PAKDD) , pp. 23-34. K.P.Soman, S. D. (2006). Insight into Data Mining: Theory and Practice. Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delh. Kalwani, M. U. (1992). Consumer price and promotion expectations: An experimental study. Journal of marketing Research, pp. 90-100. Kotler, P. (1994). Analysis, planning, implementation and control. Prentice Hall International. Kotler, P. (1994). Marketing management, analysis, planning, implementation, and control, Philip Kotler. London: Prentice-Hall International. MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability(14), pp. 281-297. Manning, K. C. (2007). Multiple Unit Price Promotions and their Effects on Quantity Purchase Intentions. Journal of Retailing, 83(4), pp. 411-421. Martínez-Ruiz, M. P.-D.-B.-Á. (2006). Assessing the impact of temporary retail price discounts intervals using SVM semiparametric regression. International review of retail, distribution and consumer research, 16(2), pp. 181-197. Mayhew, G. E. (1992). An empirical analysis of internal and external reference prices using scanner data. Journal of consumer Research, 19(1), pp. 62-70. Neslin, S. A. (2006). Sales Promotion. In W. R. A., Handbook of Marketing (pp. 310-338). London, Thousand Oaks, New Delhi: Sage. Rao, P. V. (1973). he crab fishery resources of India. Reichheld, F. F. (1993). Loyalty-based management. Harvard business review, 71(2), pp. 64-73. Rokach, L. a. (2005). Clustering methods. Data mining and knowledge discovery handbook, (pp. 321-352). Springer US. Srinivasan, S. P. (2004). Do promotions benefit manufacturers, retailers, or both? Management Science, 50(5), pp. 617-629. Sung Young JungTaek-Soo Kimand. (2001年11月29日). An Agglomerative Hierarchical Clustering Using Partial Maximum Array and Incremental Similarity Computation Method. Proceedings of the 2001 IEEE International Conference on Data Mining, 頁 265-272. Swan, J. E. (1976). Product performance and consumer satisfaction: A new concept. ournal of marketing, 40(2), pp. 25-33. The CLUSTER Procedure: Clustering Methods. (Retrieved 2009-04-26). SAS/STAT 9.2 Users Guide. . SAS Institute. Wansink, B. &. (1994). “Out of sight, out of mind”: Pantry stockpiling and brand-usage frequency. Marketing letters, 5(1), pp. 91-100. Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, pp. 236-244. Webster, Frederick E. (1971). Marketing Communication: Modern Promotional Strategy. John Wiley & Sons Publishers . Yeshin, T. (2006). Sales promotion. Cengage Learning EMEA. Zeithaml, V. A. (1996). The behavioral consequences of service quality. Journal of Marketing, pp. 31-46. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69140 | - |
| dc.description.abstract | 降價促銷是最常見且能最快達到行銷目的的手法,然而研究顯示有超過一半的商家在降價促銷時無法獲得利潤,因此,除了在促銷期間吸引新客群來增加銷售額外,在促銷期間後是否能讓消費者願意以原價回購是商家更關切的議題,促銷後銷量增加才能達成企業以促銷活動增加該商品的客群的目的。本研究將行銷經驗系統化,以人工智慧彌補人工判斷的不足或缺漏,幫助專業人員在行銷時選擇適合的促銷品,利用數據分析發現潛在且有效的促銷產品,以技術模擬人的智慧尋找更好的銷售策略。研究中使用台灣大型連鎖超市所提供之四個月交易資料進行分析,為了使回購率高、促銷銷量大的產品脫穎而出,本研究將定義「促銷有效度」算法,並使用K-Prototypes分群法根據產品性質先作粗略的分群,最後將重要的產品性質加權,計算產品與「高有效促銷品」的相似度後,找出潛在的高有效促銷品,提供商家在進行降價促銷時的參考依據,配合行銷人員豐富的經驗找到適合的促銷產品。 | zh_TW |
| dc.description.abstract | Price promotion is the most common marketing tactics that can provide the visible short-term sales results. However, research indicates that nearly half of the companies would not be able to make a profit from price promotion. Besides attracting new product users, companies are more concerned with consumers’ repurchase intention of the product after the promotion period, as their promotion goal is to increase product sales without price reduction. This thesis intends to systematize experts’ marketing experience by using artificial intelligence to enhance the human decision making and help experts select the best products for promotion. Based on the patterns discovered in the large data sets, potential effective sales products will be identified and stronger promotion strategies could be found. Four-month transaction data used in this thesis was provided by a large chain supermarket in Taiwan. “Promotion effectiveness” is defined in this thesis to set potential products which are not only highly purchased during promotions but also highly repurchased after promotions apart from other products. K-Prototypes was used as a clustering algorithm to preliminarily categorize products based on their attributes. Ten important attributes were used to calculate the weighted similarity between all products and high promotion effectiveness products. Products that have high similarity to those high promotion effectiveness products will be identified and provided to companies as potential sales products. With experienced sales experts, products could be promoted more appropriately. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:09:37Z (GMT). No. of bitstreams: 1 ntu-107-R05725022-1.pdf: 1333921 bytes, checksum: a2e733031de0953bf2f8b1c6f0e1eed5 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究對象與範圍 2 1.4 研究流程與論文架構 3 第二章 文獻探討 5 2.1 促銷活動 5 2.1.1 降價促銷 5 2.1.2 降價促銷的潛在利益 6 2.2 產品分類及分群方法 7 2.2.1 超市產品分類 7 2.2.2 產品利益分類 8 2.3 分群演算法 8 2.3.1 切割式分群法(Partitional Clustering) 8 2.3.2 階層式分群法(Hierarchical Clustering) 9 第三章 研究方法 12 3.1 資料集 12 3.1.1 分店資訊 12 3.1.2 產品資訊 12 3.1.3 促銷資訊 14 3.1.4 交易資訊 14 3.2 研究流程 14 3.2.1 資料前處理 14 3.2.2 高有效促銷品預測 14 第四章 研究結果與分析 17 4.1 回購步驟 17 4.2 回歸步驟 25 4.3 分群步驟 27 4.4 預測步驟 27 4.5 實驗 31 第五章 結論與建議 37 5.1 研究結論 37 5.2 研究限制與建議 37 第六章 參考文獻 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 中型超市 | zh_TW |
| dc.subject | 降價促銷 | zh_TW |
| dc.subject | 回購 | zh_TW |
| dc.subject | K-Prototypes | zh_TW |
| dc.subject | Supermarket | en |
| dc.subject | Price promotion | en |
| dc.subject | Repurchase | en |
| dc.subject | K-Prototypes | en |
| dc.title | 有效促銷品預測模型之研究-以台灣超市資料為例 | zh_TW |
| dc.title | The Study of Prediction Model for Effective Promotion Products - An Example of a Chain Supermarket in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧信銘(Hsin-Min Lu),王貞雅(Chen-Ya Wang) | |
| dc.subject.keyword | 中型超市,降價促銷,回購,K-Prototypes, | zh_TW |
| dc.subject.keyword | Supermarket,Price promotion,Repurchase,K-Prototypes, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU201801796 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-23 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
