請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69113完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭本垣(Ban-Yuan Kuo) | |
| dc.contributor.author | Li-Chen Hsu | en |
| dc.contributor.author | 徐立宸 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:09:19Z | - |
| dc.date.available | 2021-07-24 | |
| dc.date.copyright | 2018-07-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-23 | |
| dc.identifier.citation | Reference
1 Bowman, J. R., and Ando, M. (1986). Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone, Geophysical Journal of the Royal Astronomical Society, 88, 25–41. 2 Foley, B. J., and Long, M. D. (2011). Upper and mid-mantle anisotropy beneath the Tonga slab, Geophys. Res. Lett., 38, L02303, doi:10.1029/2010GL046021. 3 Hayes, G. P., D. J. Wald, and R. L. Johnson (2012). Slab1.0: A three-dimensional model of global subduction zone geometries, J. Geophys. Res., 117, B01302. 4 Karato, S., H. Jung, I. Katayama, and P. Skemer (2008). Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies, Annu. Rev. Earth Planet Sci., 36, 59–95. 5 Kawazoe, T., T. Ohuchi, Y. Nishihara, N. Nishiyama, K. Fujino, T. Irifune (2013). Seismic anisotropy in the mantle transition zone induced by shear deformation of wadsleyite, Phys. Earth Planet. Int., 216, 91–98. 6 Kreyszig, E. (1970). Introductory mathematical statistics: principles and methods, Wiley, New York. 7 Kuo, B. Y., C. C. Chen and T. C. Shin (1994). Split S waveforms observed in Northern Taiwan: Implications for crustal anisotropy, Geophys. Res. Lett., 21, 1491-1494. 8 Long, M. D., and Silver P. G. (2008). The subduction zone flow field from seismic anisotropy: A global view, Science, 319, 315–318. 9 Long, M. D., and Silver, P. G. (2009). Mantle flow in subduction systems: the subslab flow field and implications for mantle dynamics, J. Geophys. Res., 114, B10312. 10 Long, M. D. (2016). The Cascadia Paradox: Mantle flow and slab fragmentation in the Cascadia subduction system, J. Geodyn., 102, 151–170. 11 Lynner, C. and Long, M. D. (2014). Sub-slab anisotropy beneath the Sumatra and circum-Pacific subduction zones from source-side shear wave splitting observations, Geochem. Geophys. Geosyst., 15, 2262–2281. 12 Nowacki, A., J. M. Kendall, J. Wookey, and A. Pemberton. (2015). Mid-mantle anisotropy in subduction zones and deep water transport, Geochem. Geophys. Geosys., 16, 764–784. 13 Ozalaybey, S., and Savage, M. K. (1994). Double-layer anisotropy resolved from S phases, Geophys. J. Int., 117, 653–664. 14 Ohuchi, T., K. Fujino, T. Kawazoe, and T. Irifune. (2014). Crystallographic preferred orientation of wadsleyite and ringwoodite: Effects of phase transformation and water on seismic anisotropy in the mantle transition zone, Earth Planet. Sci. Lett., 397, 133–144. 15 Russo, R. M., and Silver, P. G. (1994). Trench-parallel flow beneath the Nazca Plate from seismic anisotropy, Science, 263, 1105–1111. 16 Savage, M. K. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting, Reviews of Geophysics, 37(1), 65–106. 17 Silver, P. G. (1996). Seismic anisotropy beneath the continents: Probing the depths of geology, Annual Review of Earth and Planetary Sciences, 24(1), 385–432. 18 Silver, P. G., and Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation, Journal of Geophysical Research, 96(B10), 16429–16454. 19 Silver, P. G., and Savage, M. K. (1994). The interpretation of shear wave splitting parameters in the presence of two anisotropic layers, Geophysical Journal International, 119(3), 949–963. 20 Tsujino, N., Y. Nishihara, D. Yamazaki, Y. Seto, Y. Higo, and E. Takahashi. (2016). Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite, Nature, 539, 81–84. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69113 | - |
| dc.description.abstract | 地表觀測提供了板塊運動的數據,在板塊之下的地函作用模式卻無法用儀器直接觀測,利用剪力波分離量測隱沒帶附近之非均向性,則能為隱沒帶的動力隱沒機制提供直接的證據,將有助於我們了解地函在板塊學說中所扮演的角色。本研究使用發生在馬里亞納與伊豆-小笠原隱沒帶的地震,移除了測站下方之非均向性,使用遠震的S波量測隱沒板塊下方的非均向性,量測結果顯示兩區域呈現不同的快方向分布模式,馬里亞納地區的快方向主要平行於海溝的方向,伊豆-小笠原地區的快方向則不與海溝平行或垂直,與板塊運動方向亦無關聯,兩區域的延遲時間平均落在2 s左右,最大可達3 s。進一步分析量測結果,發現伊豆-小笠原的剪力波分離參數隨著S波之初動排序呈現以90˚為週期的消長,且根據震源深度及波線穿越的區域,大多數的非均向性來自於轉換帶與下部地函,此結果暗示了在上部地函之下可能存在兩層可造成非均向性的物質,我們結合了過去研究的成果,即給定地函溫壓條件下應力造成之晶格優選排列,推論出伊豆-小笠原隱沒板塊下方之非均向性可能貢獻於存在轉換帶的wadsleyite與下部地函的bridgmanite。 | zh_TW |
| dc.description.abstract | Understanding the mechanism of plate subduction helps us put together a whole picture of how the mantle works under plate tectonics. The sub-slab seismic anisotropy serves as a direct tool for illuminating subduction dynamics, implying the flow direction and deformation patterns of subducting slabs. We measured source-side shear wave splitting with receiver-side correction for the Izu-Bonin and Mariana subduction zones, and find different fast direction (ϕ) patterns of these two regions. Trench parallel fast splitting directions dominate beneath the Mariana slab except for shallow events, while the fast directions of Izu-Bonin seem to be random with respect to the slab contour. The delay times (δt) of the two regions are ~ 2 seconds in average, maximum value may up to ~ 3 seconds. The variations of splitting parameters with S wave initial polarizations in Izu-Bonin region implies the sub-slab anisotropy materials more complex than a single anisotropic layer. A forward approach shows that a two-layer structure better explains the splitting observations than a single anisotropic layer. In Izu-Bonin, these splitting parameters are mainly at transition zone depths, suggest the presence of anisotropy at transition zone and lower mantle. Combined with the deformation-induced crystallographic preferred orientation (CPO) evidences, the wadsleyite and bridgmanite may cause the two-layer anisotropy at midmantle beneath Izu-Bonin. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:09:19Z (GMT). No. of bitstreams: 1 ntu-107-R05224106-1.pdf: 7859611 bytes, checksum: c5f29701999de820801bd2a1ccee50bc (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌 謝 i
摘 要 ii Abstract iii 目 錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 地球內部非均向性來源 1 1.2 剪力波分離 2 1.3 隱沒帶系統之非均向性 4 第二章 地震波形資料 6 2.1 研究區域 6 2.2 地震與測站 7 2.3 資料處理流程 9 第三章 原理與方法 10 3.1 測站下方之非均向性的修正 10 3.2 剪力波分離參數的量測 13 3.2.1 交互相關法 Rotation correlation 13 3.2.2 質點運動分析法 Particle motion analysis 15 3.3 資料篩選 17 3.4 快方向轉換 20 3.5 兩層非均向性結構 21 3.5.1 理論剪力波分離參數 21 3.5.2 null direction 22 第四章 量測結果 23 4.1 馬里亞納 23 4.2 伊豆-小笠原 26 第五章 討論 29 5.1 平行海溝之快方向分布 - 馬里亞納 29 5.2 兩層非均向性結構 - 伊豆-小笠原 31 5.2.1 兩層非均向性模型擬合 31 5.2.2 誤差估計與最佳解 33 5.2.3 初始極化方向之誤差區間(Δθ)測試 35 5.2.4 兩層非均向性結構的成因 37 第六章 結論 39 參考文獻 40 附 錄 43 A.1 S波分離參數量測資料(splitting data) 43 A.2 不具剪力波分離的量測資料(null data) 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 剪力波分離 | zh_TW |
| dc.subject | 隱沒帶 | zh_TW |
| dc.subject | 隱沒板塊下方之非均向性 | zh_TW |
| dc.subject | 轉換帶 | zh_TW |
| dc.subject | 下部地函 | zh_TW |
| dc.subject | 兩層非均向性結構 | zh_TW |
| dc.subject | two-layer anisotropy | en |
| dc.subject | transition zone | en |
| dc.subject | lower mantle | en |
| dc.subject | shear wave splitting | en |
| dc.subject | subduction zone | en |
| dc.subject | sub-slab anisotropy | en |
| dc.title | 伊豆-小笠原與馬里亞納隱沒板塊下方之非均向性 | zh_TW |
| dc.title | Mantle anisotropy beneath the Izu-Bonin and Mariana subduction zones | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 龔源成(Yuancheng Gung) | |
| dc.contributor.oralexamcommittee | 梁文宗(Wen-Tzong Liang),洪淑蕙(Shu-Huei Hung),譚諤(Tan, Eh) | |
| dc.subject.keyword | 剪力波分離,隱沒帶,隱沒板塊下方之非均向性,轉換帶,下部地函,兩層非均向性結構, | zh_TW |
| dc.subject.keyword | shear wave splitting,subduction zone,sub-slab anisotropy,transition zone,lower mantle,two-layer anisotropy, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201801327 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 7.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
