Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69105
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈偉強 (Wei-Chiang Shen)
dc.contributor.authorLyania Sartikaen
dc.contributor.author施媞佳zh_TW
dc.date.accessioned2021-06-17T03:09:13Z-
dc.date.available2026-01-31
dc.date.copyright2021-03-03
dc.date.issued2021
dc.date.submitted2021-02-18
dc.identifier.citationAbd-El-Khair, H., Elshahawy, I., and Haggag, H. K. 2019. Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean. Bull. Natl. Res. Cent. 43:19.
Ahmad, F., Ahmad, I., and Khan, M. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:173-181.
Akila, R., Rajendran, L., Harish, S., Saveetha, K., Raguchander, T., and Samiyappan, R. 2011. Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biol. Control 57:175-183.
Ajilogba, C. F., Babalola, O. O., and Ahmad, F. 2013. Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Stud. Ethno-Med. 7:205-216.
Alabouvette, C., Chantal, O., Quirico, M., and Christian, S. 2009. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol. 184:529-544.
Amini, J., Agapoor, Z., and Ashengroph, M. 2016. Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt. J. Plant Prot. Res. 56:3.
Anderson, J. A., Staley, J., Challender, M., and Heuton, J. 2018. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Res. 27:103-113.
Aquino, A. P., Bandoles, G. G., and Lim, V. A. A. 2013. R D and policy directions for effective control of Fusarium wilt disease of Cavendish banana in the Asia-Pacific region. FFTC Agricultural Policy Articles.
Arrebola, E., Tienda, S., Vida, C., De Vicente, A., and Cazorla, F. M. 2019. Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: the case study of PcPCL1606. Front. Microbiol. 10:719.
Bainton, N. J., Lynch, J. M., Naseby, D., and Way, J. A. 2004. Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms. Microb. Ecol. 48:349-357.
Bloemberg, G. V., and Lugtenberg, B. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:343–350
Brandel, J., Humbert, N., Elhabiri, M., Schalk, I. J., Mislin, G. L., and Albrecht-Gary, A. M. 2012. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans. 41: 2820–2834.
Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C., and Mercado-Blanco, J. 2019. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 10:616.
Burr, S. E., Gobeli, S., Kuhnert, P., Goldschmidt-Clermont, E., and Frey, J. 2010. Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish. Int. J. Syst. Evol. Microbiol. 60:2753–2757.
Butler, D. 2013. Fungus threatens top banana. Nature 504:195.
Briard, B., Mislin, G. L., Latgé, J.-P., and Beauvais, A. 2019. Interactions between Aspergillus fumigatus and pulmonary bacteria: current state of the field, new data, and future perspective. J. Fungi 5:48.
Calderón, C. E., Ramos, C., de Vicente, A., and Cazorla, F. M. 2015. Comparative genomic analysis of Pseudomonas chlororaphis PCL1606 reveals new insight into antifungal compounds involved in biocontrol. Mol. Plant Microbe Interact. 28:249–260.
Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., and Shen, Q. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Ferti. Soil 47:495-506.
Cazorla, F. M., Duckett, S. D., Bergström, E. T., Odijk, R., Lugtenberg, B. J. J., Thomas-Oates, J. E., et al. 2006. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl, 5-propyl resorcinol. Mol. Plant Microbe Interact. 19:41-428.
Chen, Y., Shen, X., Peng, H., Hu, H., Wang, W., and Zhang, X. 2015. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genom. Data. 4:33-42.
Cherin, L.; Brandis, A.; Ismailov, Z.; Chet, I. 1996. Pyrrolnitrin production by an Enterobacter agglomerans strain with broad-spectrum activity toward fungal and bacterial phytopathogens. Curr. Microbiol. 32:208-212.
Cornelis, P., and Dingemans, J. 2013. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 3:75.
de Ascensao, A. R., and Dubery, I. A. 2000. Panama disease: cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense race four. Phytopathology 90:1173-1180.
de Lamo, F. J., and Takken, F. L. 2020. Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front. Plant Sci. 11:37.
Deltour, P., França, S. C., Pereira, O. L., Cardoso, I., De Neve, S., Debode, J., and Höfte, M. 2017. Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: influence of soil characteristics and plant community. Agric. Ecosyst. Environ. 239:173-181.
Deng, P., Wang, X., Baird, S. M., and Lu, S. E. 2015. Complete genome of Pseudomonas chlororaphis strain UFB2, a soil bacterium with antibacterial activity against bacterial canker pathogen of tomato. Stand. Genomic Sci. 10:117.
Dita, M., Barquero, M., Heck, D., Mizubuti, E. S., and Staver, C. P. 2018. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 9:1468.
Dong, X., Ling, N., Wang, M., Shen, Q., and Guo, S. 2012. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiol. Biochem. 60:171-179.
Duke, K. A., Becker, M. G., Girard, I. J., Millar, J. L., Fernando, W. D., Belmonte, M. F., and de Kievit, T. R. 2017. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC genomics 18:467.
Dumas, Z., Ross-Gillespie, A., and Kümmerli, R. 2013. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc. Royal Soc. 280:20131055.
Dwivedi, D., and Johri, B. N. 2003. Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr. Sci. 85:1693-1703.
Fahrasmane, L., Parfait, B., and Aurore, G. 2009. Bananas, a source of compounds with health properties. Pages 75-82 in: III International Symposium on Human Health Effects of Fruits and Vegetables-FAVHEALTH 2009 1040.
Fan, P., Lai, C., Yang, J., Hong, S., Yang, Y., Wang, Q., Wang, B., Zhang, R., Jia, Z., and Zhao, Y. 2020. Crop rotation suppresses soil-borne Fusarium wilt of banana and alters microbial communities. Arch. Agron. Soil Sci. 1-13.
Fourie, G., Steenkamp, E. T., Ploetz, R. C., Gordon, T., and Viljoen, A. 2011. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect. Genet. Evol. 11:533-542.
Fu, L., Penton, C. R., Ruan, Y., Shen, Z., Xue, C., Li, R., and Shen, Q. 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 104:39-48.
Gamez, R. M., Rodríguez, F., Vidal, N. M., Ramirez, S., Alvarez, R. V., Landsman, D., and Mariño-Ramírez, L. 2019. Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006. BMC genomics 20:378.
Gava, C. A. T., and Pinto, J. M. 2016. Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biol. Control 97:13-20.
González-Sánchez, M. A., Pérez-Jiménez, R. M., Pliego, C., Ramos, C., de Vicente, A., and Cazorla, F. M. 2010. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. J. Appl. Microbiol. 109: 65-78.
Hilario, E., Buckley, T. R., and Young, J. M. 2004. Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Antonie van Leeuwenhoek 86:51-64.
Hill, D. S., Stein, J. I., Torkewitz, N. R., Morse, A. M., Howell, C. R., Pachlatko, J. P., et al. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60: 8-85.
Huang, Y., Wang, R., Li, C., Zuo, C., Wei, Y., Zhang, L., and Yi, G. 2012. Control of Fusarium wilt in banana with Chinese leek. Eur. J. Plant Pathol. 134:87-95.
Huang, R., Feng, Z., Chi, X., Sun, X., Lu, Y., Zhang, B., Lu, R., Luo, W., Wang, Y., Miao, J., and Ge, Y. 2018. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol. Res. 215:55-64.
Hu, W., Gao, Q., Hamada, M. S., Dawood, D. H., Zheng, J., Chen, Y., and Ma, Z. 2014. Potential of Pseudomonas chlororaphis subsp. aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology 104:1289-1297.
Hu, H. J., Chen, Y. L., Wang, Y. F., Tang, Y. Y., Chen, S. L., and Yan, S. Z. 2017. Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant Dis. 101:448-455.
Hu, Q. P., and Xu, J. G. 2011. A simple double-layered chrome azurol S agar (SD-CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr. J. Microbiol. Res. 5:4321-4327.
Hwang, S. C. Ko, W. H. 2004. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation. Plant Dis. 88: 580-588
Jung, B.K.; Hong, S.J.; Park, G.S.; Kim, M.C.; Shin, J.H. 2018. Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl. Biol. Chem. 61:173–180.
Karimi, K., Amini, J., Harighi, B., and Bahramnejad, B. 2012. Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Aust. J. Crop Sci.6:695.
Kirner, S., Hammer, P. E., Hill, D. S., Altmann, A., Fischer, I., Weislo, L. J., Lanahan, M., van Pée, K.-H., and Ligon, J. M. 1998. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. Res. 180:1939-1943.
Kwak, Y., and Shin, J.-H. 2015. Complete genome sequence of Burkholderia pyrrocinia 2327T, the first industrial bacterium which produced antifungal antibiotic pyrrolnitrin. J. Biotechnol. 211:3-4.
Lally, R. D., Galbally, P., Moreira, A. S., Spink, J., Ryan, D., Germaine, K. J., and Dowling, D. N. 2017. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front. Plant Sci. 8:2193.
Li, C. Y., Deng, G. M., Yang, J., Viljoen, A., Jin, Y., Kuang, R. B., Zuo, C., Cheng, Z., Yang, Q., Sheng, O., and Hu, C., Dong, T, and Yi, G. 2012. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC genomics 13:374.
Li, W., Li, C., Sun, J., and Peng, M. 2017. Metabolomic, biochemical, and gene expression analyses reveal the underlying responses of resistant and susceptible banana species during early infection with Fusarium oxysporum f. sp. cubense. Plant Dis. 101:534-543.
Lin, T.-S., Lin, C.-N., and Peng, K.-C. 2019. Comparative Analysis of Production Costs and Revenue on the Banana Planting Season in Taiwan. OALib Journal 6:1-8.
Linbo, S., Guoru, X., Lisha, D., Ran, K., Ting, G., and Shuzhen, Z. 2013. Identification of A Strain HN-1 against Banana Wilt Disease and Determination of Its Antagonism. Plant Diseases and Pests 4:12-16.
Liu, Y., Wang, Z., Bilal, M., Hu, H., Wang, W., Huang, X., Peng, H., and Zhang, X. 2018. Enhanced fluorescent siderophore biosynthesis and loss of phenazine-1-carboxamide in phenotypic variant of Pseudomonas chlororaphis HT66. Front. Microbiol. 9:759.
Lule, M., Dubois, T., Coyne, D., Kisitu, D., Kamusiime, H., and Bbemba, J. 2013. Trainer’s manual: a training course for banana farmers interested in growing tissue culture bananas.
Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T., and Samiyappan, R. 2010. Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol. Control 54:83-89.
Mazurier, S., Corberand, T., Lemanceau, P., and Raaijmakers, J. M. 2009. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 3:977-991.
McAdams, H. H., Srinivasan, B., and Arkin, A. P. 2004. The evolution of genetic regulatory systems in bacteria. Nat. Rev. Genet. 5:169-178.
Mehnaz, S., D.N. Baig, F. Jamil, B. Weselowski, G. Lazarovits. 2009. Characterization of a phenazine and hexaneylhomoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. J Microbiol Biotech. 19: 1688- 1694.
Mercado‐Blanco, J., and Prieto, P. 2013. Endophytic lifestyle of biocontrol strains of Pseudomonas spp. in olive roots. Molecular Microbial Ecology of the Rhizosphere 1:951-959.
Mercado-Blanco, J. 2015. Pseudomonas strains that exert biocontrol of plant pathogens. Pages 121-172 in: Pseudomonas. Springer.
Molina, A., and Williams, R. 2010. Mitigating the threat of banana Fusarium wilt: understanding the agroecological distribution of pathogenic forms and developing disease management strategies.
Muhidin, S. G., Leomo, S., Rakian, T. C., Arma, M. J., and Suliartini, N. W. S. 2016. The response of dwarf banana Cavendish growth and production under natural shade. Int. J. Chemtech Res. 9:541-48.
Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. D., Loewen, P. C., and De Kievit, T. R. 2015. Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PloS one 10: e0123184.
Nandi, M., Selin, C., Brawerman, G., Fernando, W. G. D., and de Kievit, T. 2017. Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol. Control 108: 47–54.
Otieno, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., and Dowling, D. N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 6:745.
Paul, D., and Sinha, S. N. 2017. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann. Agrar. Sci.15:130-136.
Park, J., Oh, S., Anderson, A., Neiswender, J., Kim, J. C., and Kim, Y. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537.
Palleroni, N. 1984. Family I. Pseudomonadaceae Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith, 1917, 555. Bergey's manual of systematic bacteriology 141-213.
Patel, J. K., and Archana, G. 2018. Engineered production of 2,4-diacetyl phloroglucinol in the diazotrophic endophytic bacterium Pseudomonas sp. WS5 and its beneficial effect in multiple plant-pathogen systems. Appl. Soil Ecol. 124:34-44.
Peix, A., Valverde, A., Rivas, R., Igual, J. M., Ramírez-Bahena, M.-H., Mateos, P. F., Santa-Regina, I., Rodríguez-Barrueco, C., Martínez-Molina, E., and Velázquez, E. 2007. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int. J. Syst. Evol. 57:1286-1290.
Peix, A., Ramírez-Bahena, M.-H., and Velázquez, E. 2009. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 9:1132-1147.
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., van Wees, S. C., and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347-375.
Ploetz, R. C. 2015. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. J. Crop Prot. 73:7-15.
Rodriguez H. and Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17: 319-339.
Rosas ,S.B.,J. A. Andrés, M. Rovera, N.S.Correa. 2006. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia legume symbiosis. Soil Biol. Biochem. 38: 3502–3505.
Rosas, S. B. 2017. Pseudomonas chlororaphis subsp. aurantiaca SR1: isolated from rhizosphere and its return as inoculant. A review. International Biology Review 1:13.
Rovera, M., E. Carlier, C. Pasluosta, G. Avanzini, J. Andres, S. Rosas. 2008. Pseudomonas aurantiaca: plant growth promoting traits, secondary metabolites and inoculation response. Plant–bacteria interactions. Strategies and techniques to promote plant growth. Germany: Wiley– VCH: 155–164.
Ruano-Rosa, D., and Mercado-Blanco, J. 2015. Combining biocontrol agents and organics amendments to manage soil-borne phytopathogens. Pages 457-478 in: Organic amendments and soil suppressiveness in plant disease management. Springer.
Schreiter, S., Babin, D., Smalla, K., and Grosch, R. 2018. Rhizosphere competence and biocontrol effect of Pseudomonas sp. RU47 independent from plant species and soil type at the field scale. Front. Microbiol. 9:97.
Schwyn,B., and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56.
Segarra, G., van der Ent, S., Trillas, I., and Pieterse, C. M. J. 2009. MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol. 11:90-96.
Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N., and Samiyappan, R. 2014. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. BioControl 59:345-355.
Serino, L., Reimmann, C., Visca, P., Beyeler, M., Chiesa, V. D., and Haas, D. 1997. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J. Bacteriol. 179:248-257.
Shen, Z., Xue, C., Penton, C. R., Thomashow, L. S., Zhang, N., Wang, B., Ruan, Y., Li, R., and Shen, Q. 2019. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biol. Biochem. 128:164-174.
Shin, S. H., Lim, Y., Lee, S.E., Yang, N.W., and Rhee, J.H. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Meth. 44:89-95.
Siamak, S. B., and Zheng, S. 2018. Banana Fusarium wilt (Fusarium oxysporum f. sp. cubense) control and resistance, in the context of developing wilt-resistant bananas within sustainable production systems. Hortic. Plant J. 4:208-218.
Sousa, A. M., Machado, I., Nicolau, A., and Pereira, M. O. 2013. Improvements on colony morphology identification towards bacterial profiling. J. Microbiol. Methods 95:327-335.
Spencer, M., Ryu, C. M., Yang, K. Y., Kim, Y. C., Kloepper, J. W., and Anderson, A. J. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol. Mol. Plant Pathol. 63:27-34.
Steel, K. J. 1961. The oxidase reaction as a taxonomic tool. Microbiology 25:297-306.
Stockwell, V. O., and Stack, J. P. 2007. Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244-249.
Stover, R. H. 1962. Fusarial wilt (Panama Disease) of bananas and other Musa species. Fusarial wilt (Panama disease) of bananas and other Musa species.
Stover, R. H. 1972. Banana, plantain and abaca diseases. Banana, plantain and abaca diseases. 316pp.
Su, H. J., Chuang, T. Y. Kong, W. S. 1977. Physiological race of Fusarial wilt fungus attacking Cavendish banana of Taiwan. Taiwan Banana Res. Inst. Spec. Publ. 2: 1-21.
Su, H.-j., Hwang, S., and Ko, W. 1986. Fusarial wilt of Cavendish bananas in Taiwan. Plant Dis. 70:814-818.
Sun, J., Zhang, J., Fang, H., Peng, L., Wei, S., Li, C., Zheng, S., and Lu, J. 2019. Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana ‘Guijiao 9’ in response to Fusarium wilt. Plant Physiol. Bioch. 141:83-94.
Takishita, Y., Charron, J. B., and Smith, D. L. 2018. Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Front. Microbiol. 9:2119.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.
Trivedi, P., Pandey, A., and Palni, L. M. S. 2008. In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol. Res. 163:329-336.
van den Berg, N., Berger, D. K., Hein, I., Birch, P. R., Wingfield, M. J., and Viljoen, A. 2007. Tolerance in banana to Fusarium wilt is associated with early up‐regulation of cell wall‐strengthening genes in the roots. Mol. Plant. Pathol. 8:333-341.
van de Mortel, J. E., de Vos, R. C., Dekkers, E., Pineda, A., Guillod, L., Bouwmeester, K., van Loon, J. J. A., Dicke, M., and Raaijmakers, J. M. 2012. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol. 160:2173-2188.
van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483.
van Peer, R., Niemann, G. J., and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81:728-734.
van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., van Loon, L. C., and Pieterse, C. M. J. 1999. Rhizobacteria mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defence related genes but stimulates the expression of jasmonate inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537-549.
van Wees, S. C., van der Ent, S., and Pieterse, C. M. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443-448.
Vásquez-Ponce, F., Higuera-Llantén, S., Pavlov, M. S., Marshall, S. H., and Olivares-Pacheco, J. 2018. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica. Braz. J. Microbiol. 49:695-702.
Vézina, A. 2018. Musa paradisiaca. Recuperado de http://www. promusa. org/Musa+ paradisiaca.
Vida, C., Cazorla, F. M., and de Vicente, A. 2017. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res. Microbiol. 168: 583–593.
Wang, Z., Jia, C., Li, J., Huang, S., Xu, B., and Jin, Z. 2015. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish). Funct. Integr. Genomics 15:47-62.
Wang, B., Li, R., Ruan, Y., Ou, Y., Zhao, Y., and Shen, Q. 2015. Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities. Soil Biol. Biochem. 86:77-86.
Warman, N. M., and Aitken, E. A. 2018. The movement of Fusarium oxysporum f. sp. cubense (sub-tropical race 4) in susceptible cultivars of banana. Front. Plant Sci. 9:1748.
Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309-348.
Xue, C., Penton, C. R., Shen, Z., Zhang, R., Huang, Q., Li, R., Ruang, Y., and Shen, Q. 2015. Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci. Rep. 5:11124.
Yang, J. L., Wang, M. S., Cheng, A. C., Pan, K. C., Li, C. F., and Deng, S. X. 2008. A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection. World J. Gastroenterol. 14:2872.
Youard, Z. A., Mislin, G. L., Majcherczyk, P. A., Schalk, I. J., and Reimmann, C. 2007. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J. Biol. Chem. 282:35546-35553.
Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., and Shen, Q. 2015. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci. Rep. 5:13438.
Yu, J. M., Wang, D., Ries, T. R., Pierson III, L. S., and Pierson, E. A. 2018. An upstream sequence modulates phenazine production at the level of transcription and translation in the biological control strain Pseudomonas chlororaphis 30-84. PLoS one. 13:2.
Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I., and Pieterse, C. M. 2013. Unravelling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol. 162:304-318.
Zhang, L., Cenci, A., Rouard, M., Zhang, D., Wang, Y., Tang, W., and Zheng, S. J. 2019. Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Sci. Rep. 9:8199.
Zhang, L., Chen, W., Jiang, Q., Fei, Z., and Xiao, M. 2020. Genome analysis of plant growth-promoting rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca JD37 and insights from comparison of genomics with three Pseudomonas strains. Microbiol. Res. 237: 126483.
Zhou, D., Jing, T., Chen, Y., Wang, F., Qi, D., Feng, R., Xie, J., and Li, H. 2019. Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol. 19:161.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69105-
dc.description.abstract香蕉黃葉病,由病原真菌 Fusarium oxysporum f. sp. cubense(Foc)所引起,為常見的土傳性病害,造成香蕉萎凋病徵。此病害分布廣泛,並以東南亞地區最為普遍,對全球香蕉的生產具有重大威脅。香蕉黃葉病菌可透過罹病組織、人類移動,及灌溉水等途徑傳播,病原菌可藉由厚膜胞子長時間殘存於土壤中。現行香蕉黃葉病的防治策略,包括種植抗病蕉種、施用農藥,及田間衛生管理耕作防治等,其中生物防治菌的施用,咸信是對環境友善及產業永續的另一防治策略。
在本實驗室前人的研究中,從有機田區香蕉根部分離出的假單胞菌屬(Pseudomonas) 菌株 AH1E1,對香蕉黃葉病菌熱帶第四型生理小種(TR4)展現生物防治的潛力。假單胞菌屬細菌為已知具有潛力的生物防治菌,具有促進植物生長、抑制病原菌,及誘導植物抗性等能力。本研究進一步利用atpD、carA、recA、16s rRNA、gyrB、rpoB,及rpoD等基因序列片段及全基因體資訊,進行比對與親緣分析,確定AH1E1菌株的分類地位為 Pseudomonas chlororaphis subsp. aurantiaca。生化測定包括螯鐵蛋白(Siderophore)、吲哚乙酸(Indole acetic acid)、氧化酵素活性,以及溶磷能力等,顯示 AH1E1 具有促進植物生長及生態適應等特性。進一步利用液相層析質譜儀(LC MS/MS),分析AH1E1與Foc TR4的對峙培養樣品,發現 pyrrolnitrin及pyochelin的存在。AH1E1菌株也進一步進行全基因定序,完整組裝顯示基因體大小為7,343,089鹼基對,並找到pyrrolnitrin 和pyochelin 生合成的兩個操縱組。透過綠色螢光蛋白標定菌株進行定殖觀察,顯示AH1E1能於香蕉根圈及部分根部組織進行定殖纏據。此外,溫室盆缽生物防治試驗結果顯示,AH1E1能有效抑制黃葉病的發生。未來期望能開發劑型及施用流程,進一步測試及應用Pseudomonas chlororaphis AH1E1於田間黃葉病的防治,提升香蕉產業的永續發展。
zh_TW
dc.description.abstractPanama disease caused by Fusarium oxysporum f. sp. cubense (Foc) is a common soil-borne disease that causes wilt in banana plants. This disease is widespread, especially in Southeast Asia, and has been threatening worldwide banana production and productivity. The pathogen is transmitted through infected plant materials, human movement, and irrigation water, and the survival structure of Foc, chlamydospore, can remain in soils for a long period. Management strategies such as the use of resistant cultivars, fungicides, field sanitation, and other cultural practices have been suggested for Panama disease. Among them, the implementation of biocontrol agents is an ecologically friendly and promising way for sustainable banana production. Previous studies in the laboratory isolated Pseudomonas sp. AH1E1 from root tissues of bananas grown in organic fields, which shows promising biocontrol ability against Foc tropical race 4 (TR4) strain. Pseudomonas spp. as potential biocontrol agents have been demonstrated to contain various abilities including plant growth promotion, suppression of pathogenic microorganisms, and induction of plant resistance. In this study, Pseudomonas sp. AH1E1 was further identified as Pseudomonas chlororaphis subsp. aurantiaca based on the sequences of several housekeeping genes (atpD, carA, recA, 16s rRNA, gyrB, rpoB, and rpoD genes) and genome phylogeny study. Biochemical assays for the siderophore, indole acetic acid, oxidase, and phosphate solubilization activities demonstrated this strain exhibited various traits for plant growth promotion and ecological fitness. Chemical analysis by LC-MS/MS was conducted to screen for potential antifungal compounds produced by P. chlororaphis AH1E1 against Foc TR4 in dual culture assay. Pyrrolnitrin and pyochelin were found to be present in the fractions. This strain was further completely sequenced and the genome size was 7,343,089 bp in length. Two operons, potentially responsible for the biosynthesis of pyrrolnitrin and pyochelin, were also identified from the genome. Colonization study using GFP-tagged strain showed this strain efficiently colonized the rhizosphere of banana roots and also grew limitedly inside root tissues. Pot biocontrol assay showed that P. chlororaphis AH1E1 can efficiently suppress the disease under laboratory conditions. In the future, we hope to further develop a formulation and protocol of this candidate bacterium for field application to sustain banana production.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:09:13Z (GMT). No. of bitstreams: 1
U0001-1702202109250600.pdf: 4159371 bytes, checksum: 5c30eeff027c916d97a166ba5934cf30 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents
Acknowledgment i
中文摘要 ii
ABSTRACT iv
Tables of Contents vi
List of Tables ix
Table of Figures x
Chapter 1. 1
Introduction 1
1.1. Banana and its importance in Taiwan 2
1.2. Panama disease (Fusarium oxysporum f. sp. cubense) and its history 3
1.3. Disease management and Biological Control 5
1.4. Pseudomonas spp. and Pseudomonas chlororaphis as a potential biocontrol agent 7
1.5. Antifungals and plant growth promoters produced by Pseudomonas chlororaphis 9
1.6. Aims of study 10
Chapter 2. 12
Materials and methods 12
2.1. Bacteria selection and in vitro inhibition of Fusarium oxysporum f. sp. cubense 12
2.2. Biochemical and molecular identification of P. chlororaphis AH1E1 12
2.2.1. Biochemical 12
2.3. Molecular identification 14
2.3.1. DNA extraction 14
2.3.2. TA Cloning and PCR amplification 15
2.3.3. Plasmid Extraction 16
2.3.4. PCR amplification of 16s rRNA and gyrB gene 16
2.3.5. Phylogenetic tree construction 17
2.4. Pseudomonas chlororaphis AH1E1 colonization 18
2.4.1. GFP transformation and its detection 18
2.4.2. Pseudomonas chlororaphis AH1E1 isolation in root tissue and soil field sample 20
2.5. Detection of inhibitory compound produced by P. chlororaphis AH1E1 24
2.5.1. In vitro antagonism of Pseudomonas chlororaphis and Fusarium oxysporum f. sp. cubense TR4 24
2.5.2. Extraction of antibiotic substances 24
2.6. Imaging mass spectrometry 25
2.7. Gene expression of antifungal compounds 26
2.7.1. RNA Extraction 26
2.7.2. Detection of Antifungal compound operon 28
2.8. Biocontrol assay of Fusarium wilt by P. chlororaphis AH1E1 28
2.9. Hybrid Assembly 29
2.9.1. DNA Extraction 29
2.9.2. Open reading frame and rRNA-tRNA prediction 29
2.9.3. Genome Comparison 30
2.10. Data Analysis 30
Chapter 3. 32
Results 32
3.1. Bacteria selection and in vitro inhibition of Fusarium oxysporum f. sp. cubense TR4 32
3.2. Identification 32
3.2.1. Biochemical 32
3.2.2. Molecular identification 34
3.3. Pseudomonas chlororaphis AH1E1 colonization 35
3.3.1. GFP transformation and its detection 35
3.3.2. Pseudomonas chlororaphis AH1E1 isolation in root tissue and soil field sample 35
3.4. Detection of inhibitory compound produced by P. chlororaphis AH1E1 36
3.4.1. In vitro antagonism of Pseudomonas chlororaphis AH1E1 and Fusarium oxysporum f. sp. cubense TR4 36
3.4.2. Extraction of antibiotic substances 37
3.5. Imaging mass spectrometry (IMS) 38
3.6. Gene expression of antifungal compounds 38
3.6.1. Detection of Antifungal compound genes 38
3.6.2. RNA Extraction 40
3.7. Biocontrol assay of Fusarium wilt by P. chlororaphis AH1E1 40
3.8. Hybrid Assembly 41
Chapter 4. 43
Discussion 43
References 47
Tables 64
Figures 72
Appendix Tables 118
dc.language.isoen
dc.subject香蕉黃葉病zh_TW
dc.subject螯鐵蛋白zh_TW
dc.subject生物防治菌zh_TW
dc.subject綠葉假單胞菌zh_TW
dc.subject硝吡咯菌素zh_TW
dc.subject香蕉黃葉病菌zh_TW
dc.subjectFusarium oxysporum f. sp. cubenseen
dc.subjectPanama diseaseen
dc.subjectPseudomonas chlororaphisen
dc.subjectbiological control agenten
dc.subjectpyrrolnitrinen
dc.subjectpyochelinen
dc.title綠葉假單胞菌作為香蕉黃葉病生物防治菌之探討zh_TW
dc.titlePseudomonas chlororaphis as a potential biocontrol agent against Panama disease caused by Fusarium oxysporum f. sp. cubenseen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊玉良(Yu-Liang Yang),葉信宏(Hsin-Hung Yeh)
dc.subject.keyword香蕉黃葉病菌,香蕉黃葉病,綠葉假單胞菌,生物防治菌,硝吡咯菌素,螯鐵蛋白,zh_TW
dc.subject.keywordFusarium oxysporum f. sp. cubense,Panama disease,Pseudomonas chlororaphis,biological control agent,pyrrolnitrin,pyochelin,en
dc.relation.page118
dc.identifier.doi10.6342/NTU202100714
dc.rights.note有償授權
dc.date.accepted2021-02-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-1702202109250600.pdf
  未授權公開取用
4.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved