請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69082完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任(Yuh-Renn Wu) | |
| dc.contributor.author | En-Wen Chang | en |
| dc.contributor.author | 張恩文 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:50:57Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | [1] R. Newell, D. Raimi, and G. Aldana, “Global energy outlook 2019: The next generation of energy,” Resources for the Future, pp. 8–19, 2019. [2] E. Gimon, M. O’BOYLE, C. T. Clack, and S. McKee, “The coal cost crossover: Economic viability of existing coal compared to new local wind and solar resources,” Energy Innovation LLC, 2019. [3] A. Louw, 'Clean Energy Investment Trends,' Bloomberg New York, 2018. [4] N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nature Energy, vol. 3, no. 8, pp. 682–689, 2018. [5] B. Chen, M. Yang, S. Priya, and K. Zhu,'Origin of J–V hysteresis in perovskite solar cells,' The Journal of Physical Chemistry Letters, vol. 7, no. 5, pp. 905- 917, 2016. [6] W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Gr¨atzel, 'Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field,' Energy Environmental Science, vol. 8, no. 3, pp. 995-1004, 2015. [7] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, 'Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,' Nature Communications, vol. 5, no. 1, pp. 1-7, 2014. [8] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, 'Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,' Energy Environmental Science, vol. 7, no. 8, pp. 2619-2623, 2014. [9] R. Saraf and V. Maheshwari, “Self-powered photodetector based on electricfield-induced effects in MAPbI3 perovskite with improved stability,” ACS Applied materials Interfaces, vol. 10, no. 25, pp. 21066-21072, 2018. [10] G. Xing, B. Wu, S. Chen, J. Chua, N. Yantara, S. Mhaisalkar, N. Mathews, and T. C. Sum, 'Interfacial electron transfer barrier at compact TiO2/CH3NH3PbI3 heterojunction,' Small, vol. 11, no. 29, pp. 3606-3613, 2015. [11] A. G´omez, Q. Wang, A. R. Go˜ni, M. Campoy-Quiles, and A. Abate, 'Ferroelectricity-free lead halide perovskites,' Energy Environmental Science, vol. 12, no. 8, pp. 2537-2547, 2019. [12] L. Bertoluzzi, R. S. Sanchez, L. Liu, J.-W. Lee, E. Mas-Marza, H. Han, N.-G. Park, I. Mora-Sero, and J. Bisquert, 'Cooperative kinetics of depolarization in CH3NH3PbI3 perovskite solar cells,' Energy Environmental Science, vol. 8, no. 3, pp. 910-915, 2015. [13] J. M. Frost, K. T. Butler, and A. Walsh, 'Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells,' APL Materials, vol. 2, no. 8, p. 081506, 2014. [14] Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, 'Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films,' TheJjournal of Physical Chemistry Letters, vol. 5, no. 19, pp. 3335-3339, 2014. [15] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, and A. Walsh, 'Atomistic origins of high-performance in hybrid halide perovskite solar cells,' Nano Letters, vol. 14, no. 5, pp. 2584-2590, 2014. [16] Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, 'Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,' Advanced Energy Materials, vol. 5, no. 15, p. 1500615, 2015. [17] P. Calado, A. M. Telford, D. Bryant, X. Li, J. Nelson, B. C. O’Regan, and P. R. Barnes, 'Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis,' Nature Communications, vol. 7, no. 1, pp. 1-10, 2016. [18] S. A. Weber, I. M. Hermes, S.-H. Turren-Cruz, C. Gort, V. W. Bergmann, L. Gilson, A. Hagfeldt, M. Graetzel, W. Tress, and R. Berger, 'How the formation of interfacial charge causes hysteresis in perovskite solar cells,' Energy Environmental Science, vol. 11, no. 9, pp. 2404-2413, 2018. [19] E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heum¨uller, M. G. Christoforo, and M. D. McGehee, 'Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells,' Energy Environmental Science, vol. 7, no. 11, pp. 3690-3698, 2014. [20] J. M. Azpiroz, E. Mosconi, J. Bisquert, and F. De Angelis, 'Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation,' Energy Environmental Science, vol. 8, no. 7, pp. 2118-2127, 2015. [21] B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. GarciaBelmonte, K. Zhu, and S. Priya, 'Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells,' The Journal of Physical Chemistry Letters, vol. 6, no. 23, pp. 4693-4700, 2015. [22] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.- W. Wang, K. Wojciechowski, and W. Zhang, 'Anomalous hysteresis in perovskite solar cells,' The Journal of Physical Chemistry Letters, vol. 5, no. 9, pp. 1511-1515, 2014. [23] M. Bag and P. Srivastava, 'Ion transport and stabilityiIssues in organic– Inorganic Perovskite Materials,' Springer, pp. 117-152, 2020. [24] J.-Y. Huang, E.-W. Chang, and Y.-R. Wu, 'Optimization of MAPbI3-based perovskite solar cell with textured surface,' IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1686-1692, 2019. [25] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966. [26] F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, and J. Van Luppen, 'PEDOT/PSS: synthesis, characterization, properties and applications,' Synthetic Metals, vol. 135, pp. 115-117, 2003. [27] H. Yan, T. Jo, and H. Okuzaki, 'Highly conductive and transparent poly (3, 4- ethylenedioxythiophene)/poly (4-styrenesulfonate)(PEDOT/PSS) thin films,' Polymer Journal, vol. 41, no. 12, pp. 1028-1029, 2009. [28] W. H. Weedon and C. M. Rappaport, “A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 401–410, 1997. [29] D. Wilby, M. B. Toomey, P. Olsson, R. Frederiksen, M. C. Cornwall, R. Oulton, A. Kelber, J. C. Corbo, and N. W. Roberts, “Optics of cone photoreceptors in the chicken (gallus gallus domesticus),” Journal of the Royal Society Interface, vol. 12, no. 111, p. 20150591, 2015. [30] S. Fonash, Solar cell device physics. Elsevier, 2012. [31] B. Murali, M. I. Saidaminov, A. L. Abdelhady, W. Peng, J. Liu, J. Pan, O. M. Bakr, and O. F. Mohammed, 'Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications,' Journal of Materials Chemistry C,vol. 4, no. 13, pp. 2545-2552, 2016. [32] L. Cao and B. Wei, 'Scattering of targets over layered half space using a semianalytic method in conjunction with FDTD algorithm,' Optics Express, vol. 22, no. 17, pp. 20691-20704, 2014. [33] M. Potter and J.-P. Bérenger, 'A review of the total field/scattered field technique for the FDTD method,' FERMAT, vol. 19, pp. 1-13, 2017. [34] D. M. Guldi, 'Fullerenes: three dimensional electron acceptor materials,' Chemical Communications, no. 5, pp. 321-327, 2000. [35] H. M. Yao and L. Jiang, “Machine-learning-based PML for the FDTD method,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 1, pp. 192–196, 2018. [36] A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. De La Chapelle, 'Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,' Physical Review B, vol. 71, no. 8, p. 085416, 2005. [37] D. F. Kelley, R. J. Luebbers, “Piecewise linear recursive convolution for dispersive media using FDTD,' IEEE Transactions on Antennas and Propagation, vol. 44, no. 6, pp. 792-797, 1996. [38] S. Liu, J. Mo, and N. Yuan, “Piecewise linear current density recursive convolution FDTD implementation for anisotropic magnetized plasmas,' IEEE Microwave and Wireless Components Letters, vol. 14, no. 5, pp. 222-224, 2004. [39] Sirendaoreji, J. Sun, 'Auxiliary equation method for solving nonlinear partial differential equations,' Physics Letters A, vol. 309, no. 5-6, pp. 387-396, 2003. [40] Z. Li, C. Xiao, Y. Yang, S. P. Harvey, D. H. Kim, J. A. Christians, M. Yang, P. Schulz, S. U. Nanayakkara, C.-S. Jiang, “Extrinsic ion migration in perovskite solar cells,” Energy Environmental Science, vol. 10, no. 5, pp. 1234–1242, 2017. [41] Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, 'Giant switchable photovoltaic effect in organometal trihalide perovskite devices,' Nature materials, vol. 14, no. 2, pp. 193-198, 2015. [42] S. Meloni, T. Moehl, W. Tress, M. Franckeviˇcius, M. Saliba, Y. H. Lee, P. Gao, M. K. Nazeeruddin, S. M. Zakeeruddin, U. Rothlisberger, and M. Graetzel, 'Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells,' Nature Communications, vol. 7, no. 1, pp. 1-9, 2016. [43] X. Liu, T. Bu, J. Li, J. He, T. Li, J. Zhang, W. Li, Z. Ku, Y. Peng, F. Huang, and J. Zhong, 'Stacking n-type layers: effective route towards stable, efficient and hysteresis-free planar perovskite solar cells,' Nano Energy, vol. 44, pp. 34-42, 2018. [44] Y. Yuan and J. Huang, 'Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability,' Accounts of Chemical Research, vol. 49, no. 2, pp. 286-293, 2016. [45] W. Tress, J. P. Correa Baena, M. Saliba, A. Abate, and M. Graetzel, 'Inverted current–voltage hysteresis in mixed perovskite solar cells: polarization, energy barriers, and defect recombination,' Advanced Energy Materials, vol. 6, no. 19, p. 1600396, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69082 | - |
| dc.description.abstract | 隨著全球暖化變得更加嚴重,世界正處於能源轉型的關鍵時期,各國皆積極尋求可替代的再生能源。其中由於鈣鈦礦材料優異的光電性能,新型有機無機雜化鹵化物鈣鈦礦太陽能電池(PSC)成為下一代太陽能電池的新秀,其效率在過去的十年中已從 3 %顯著提高到 23.3 %,是國際學術研究中的熱門議題,同時也具有巨大的商業化潛力。然而鈣鈦礦光電元件的遲滯效應一直是尚未解決的問題,它不但會影響測量的準確性和功率轉換效率的可信度,同時也跟有機光電元件不穩定性有很大的關聯。因此,我們實驗室開發了不同的模擬軟體,藉以分析鈣鈦礦太陽能電池中遲滯效應的物理機制。而通常提升元件表現和載流子擴散長度需要投入大量的研究成本和時間,因此,本論文也積極研究在不需要改善材料品質的前提下,針對穩定性好與差的鈣鈦礦光電元件提出優化效率的方法。 在本論文中,首先用二維時域有限差分法(2D-FDTD)構建了一個光學模型,計算太陽光源入射的光場分布以及光生載子分布。接著藉由二維泊松方程式(Poisson`s equation)和漂移擴散方程組(drift-diffusion equation)來模擬有機材料和非有機材料的電性特性,並計算鈣鈦礦太陽能電池中載流子的分佈,以及電流密度-電壓曲線和能帶圖等。此外我們根據實驗理論,利用二維泊松和漂移擴散方程組架構隨時間變化的離子漂移-擴散模型,用以研究由離子遷移作用引起的鈣鈦礦太陽能電池的遲滯特性,並在不同條件下進行了建模,發現與元件的遲滯特性具有很大的相關性,它取決於(1)外加偏壓的掃描 速率; (2)MAPbI3 材料中的離子濃度,以及(3)MAPbI3 的載子壽命。還分析了傳統正式(n-i-p)和反式(p-i-n)MAPbI3 結構太陽能電池的遲滯表現,結果顯示傳統架構的 PSC 具有較大的遲滯效應,我們推斷傳統結構和倒置結構的差異在於器件內部內建電壓差所導致,該差異導致碘離子(I-)遷移至傳輸層並影響載子傳輸與提取,進而導致不同的遲滯現象。此外,本論文的目的是針對不同載子壽命的 PSC 提升元件的效率,分別是 1奈秒、10 奈秒、1000 奈秒的 MAPI3 太陽能電池,並在 FTO 基板上方設計 了三角凹槽的週期性的紋理表面,利用波動光學的方式捕捉太陽光,以增加光電流。並調整了三角結構的振幅和周期以及材料厚度,以找到不同載子壽命的最佳效率優化的週期性紋理結構。通過將 FTO 的厚度從 250nm 減小到50nm,將 Spiro-OMeTAD 的厚度減小到 40nm 至 100nm,可以極大地增加MAPbI3 的光電流並改善 PCE。 因此,在具有適當的三角形結構和材料厚度的情況下,載流子無輻射壽命為 1 奈秒的元件效率從 11.48%提高到 15.34%,載流子無輻射壽命為 10 奈秒的元件效率從 14.02%提高到 18.03% ,載流子非輻射壽命為 1000 奈秒的元件效率從 18.01%提高到 22.68%。 | zh_TW |
| dc.description.abstract | As the global warming has become more serious, the world is in a critical era of energy transformation to the sustainable energy. Among that, perovskite solar cell (PSC) is the subject of international research, attributed to the excellent photoelectric performance of novel organic-inorganic hybrid halide perovskite materials. However, there has been an issue of hysteresis effect of PSC, which affects the accuracy and credibility of the power conversion efficiency (PCE) of device. The hysteresis characteristic is also dependent on the stability of organic perovskite material. Thus, our laboratory is dedicated to the simulation for the organic and non-organic hybrid perovskite photovoltaic devices to analyze the physical mechanism of hysteresis effect. In this essay, the two-dimensional simulation of PSCs is modeled. For the light field simulation, two-dimensional finite-difference time-domain (2D-FDTD) method is applied to obtain the distribution of photo-generated carriers. Poisson’s and drift-diffusion equations are used to calculated the transmission of carriers in PSC. The hysteresis characteristics of PSCs caused by ion migration is investigated by the time dependent ion model based on the two-dimensional Poisson and drift-diffusion equations under different conditions. The I-V hysteresis characteristics of PSCs is depending on (1) bias scan rate; (2) concentration of ion in MAPbI3 material, and (3) carrier lifetime of MAPbI3.The hysteresis effect of the traditional and inverted architecture MAPbI3–based solar cells is analyzed, and the results show that traditional architecture PSCs have larger hysteresis effect. It is due to the difference of built-in voltage of the device, which induces (I- ) ion migration to the transport layer and affect the depletion field. In addition, this essay aims at improving the efficiency of PSC with different carrier nonradiative lifetimes of MAPI3. A periodic textured surface with triangular grooves is designed above the FTO substrate to capture sunlight by the methods based on wave optics to increase photocurrent. The amplitude and period of structure and thickness of MAPbI3 are adjusted to find the optimal periodic textured structure of PSC. Additionally, by reducing the thickness of FTO from 250nm to 50nm and the thickness of Spiro-OMeTAD ranged from 40nm to 100nm, the photocurrent of MAPbI3 is greatly increased and PCE is improved. Therefore, the efficiency of the PSC with a carrier non-radiation lifetime of 1 ns is further improved from 11.48% to 15.34%, and the efficiency of the PSC with a carrier non-radiation lifetime of 10 ns increases from 14.02% to 18.03%, and the efficiency of a PSC with a carrier nonradiative lifetime of 1000 ns is increased from 18.01% to 22.68%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:50:57Z (GMT). No. of bitstreams: 1 U0001-1608202023220300.pdf: 6115013 bytes, checksum: 291b6c430b0e48e9a423e0a2cd7ce2ac (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要..............................................i Abstract..............................................i Contents ....................................1 List of Figures.................................5 List of Tables...........................17 Introduction.............................19 1.1 Research Background..................................19 1.2 Literature Review ....................................20 1.3 Research motivation .........................................24 1.4 Content of article for research objectives...............................24 1.5 Basic principles of organic solar cells..............................25 2 Methodology .............................................27 2.1 Outline of research methods .................................27 2.2 Simulation of optical field: 2D-FDTD method ..................28 2.2.1 Finite-difference Time-domain algorithm .......................28 2.2.2 Courant stability criterion ..........................32 2.2.3 Total-field/scattered-field, TF/SF) ......................33 2.2.4 Perfectly matched layer absorbing boundary .........................35 2.2.5 Modeling of Dispersive Materials......................39 2.3 Simulation of electrical properties:2D-DDCC solver .........................42 2.4 Simulation of hysteresis characteristics: time-dependent ion driftdiffusion model.......................................44 2.5 Optical field convert into electrical model..........................46 2.6 Carrier transport in organic materials.......................................47 3 The Hysteresis effect of hybrid solar cell...........................49 3.1 Preface.............................................................49 3.1.1 Literature Review ................................49 3.1.2 Goals and methods of research..................................50 3.2 Simulation model ...................................................51 3.2.1 Simulation structure for FDTD model.....................................51 3.2.2 Simulation condition for hysteresis effect................................51 3.3 The physical mechanism of the hysteresis effect..............54 3.3.1 Before forward scan.....................................54 3.3.2 Forward voltage scan...............................56 3.3.3 Before backward scan..............................................56 3.3.4 Backward voltage scan ...........................................57 3.4 The hysteresis effect under different operation condition..................58 3.4.1 Dependence of J-V curves on scan rate....................................58 3.5 Analysis the hysteresis characteristic dependent on ion density .......60 3.6 The hysteresis of traditional and inverted architectures....................63 4 The surface plasmon resonance of PSC structure with textured surface .....67 4.1 Preface.....................................................67 4.1.1 Motivation of research......................................67 4.1.2 Goal of research .....................................................67 4.2 Simulation results of hybrid solar cell with TiO2/MAPbI3/SpiroOMeTAD...................................................68 4.2.1 The appropriate MAPbI3 thickness for PSC of carrier nonradiative lifetime of 1ns.......................................................68 4.2.2 The appropriate MAPbI3 thickness for PSC of carrier nonradiative lifetime of 10ns.....................................................72 4.2.3 The appropriate MAPbI3 thickness for PSC of carrier nonradiative lifetime of 1000ns.................................................74 4.3 Simulation of PSC device with appropriate textured structure ........77 4.3.1 The different textured structure for 150nm thickness MAPbI3 with carrier nonradiative lifetime 1ns. .....................77 4.3.2 The different textured structure for 300 nm thickness MAPbI3 with carrier nonradiative lifetime 10 ns. ..................80 4.3.3 The different textured structure for 350 nm thickness MAPbI3 with carrier nonradiative lifetime 1000 ns. ..............82 4.4 Different period structures of PSC benefit to optical current leading to a high efficiency...............................84 4.4.1 For 150nm thickness MAPbI3 with carrier nonradiative lifetime 1ns...........................................84 4.4.2 For 300nm thickness MAPbI3 with lifetime 10ns....................90 4.4.3 For 350nm thickness MAPbI3 with lifetime 1000ns................95 4.5 Adjust the thickness of MAPbI3 with the optimal textured structure for higher performance. ........................................97 4.5.1 The influence of thickness in the optimized textured structure with 1 ns carrier nonradiative lifetime ....................98 4.5.2 The influence of thickness in the optimized textured structure with 10 ns carrier lifetime.......................................102 4.5.3 The influence of thickness in the optimized textured structure with 1000 ns carrier lifetime...................................105 5 Conclusion ......................................................110 6 Appendix...................................................112 Bibliography .................................................117 | |
| dc.language.iso | en | |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 離子遷移 | zh_TW |
| dc.subject | 電流-電壓遲滯 | zh_TW |
| dc.subject | 表面紋理結構 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | perovskite solar cell | en |
| dc.subject | ion migration | en |
| dc.subject | current-voltage hysteresis | en |
| dc.subject | textured structure | en |
| dc.subject | surface plasmon resonance | en |
| dc.title | 以二維模擬分析鈣鈦礦太陽能電池之遲滯效應和優化條件 | zh_TW |
| dc.title | Analysis of the Hysteresis Effect and Optimization of the Efficiency for MAPbI3-based Perovskite Solar Cells with Two Dimension Simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 吳育任(0000-0002-1457-3681) | |
| dc.contributor.oralexamcommittee | 林清富(Ching-Fuh Lin),陳奕君(I-Chun Cheng),邱奕鵬(Yih-Peng Chiou) | |
| dc.subject.keyword | 鈣鈦礦太陽能電池,離子遷移,電流-電壓遲滯,表面紋理結構,表面電漿共振, | zh_TW |
| dc.subject.keyword | perovskite solar cell,ion migration,current-voltage hysteresis,textured structure,surface plasmon resonance, | en |
| dc.relation.page | 113 | |
| dc.identifier.doi | 10.6342/NTU202003635 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202023220300.pdf 未授權公開取用 | 5.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
