Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江皓森
dc.contributor.authorYi-Hsuan Hsuen
dc.contributor.author許翊暄zh_TW
dc.date.accessioned2021-06-17T02:50:44Z-
dc.date.available2027-08-15
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation1. Hakkim, A., et al., Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A, 2010. 107(21): p. 9813-8.
2. Maloy, K.J. and F. Powrie, Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature, 2011. 474(7351): p. 298-306.
3. Dragasevic, S., et al., Genetic and environmental factors significant for the presentation and development of inflammatory bowel disease. Eur J Gastroenterol Hepatol, 2017. 8: p. 909-15.
4. Tsianos, E.V., K.H. Katsanos, and V.E. Tsianos, Role of genetics in the diagnosis and prognosis of Crohn's disease. World J Gastroenterol, 2011. 17(48): p. 5246-59.
5. K.H. Katsanos, et al., Obstruction and pseudoobstruction in inflammatory bowel disease. Annals of Gastroenterology, 2010. 23(4): p. 243-56.
6. Brubaker, S.W., et al., Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol, 2015. 33: p. 257-90.
7. Rakoff-Nahoum, S. and R. Medzhitov, Innate immune recognition of the indigenous microbial flora. Mucosal Immunol, 2008. 1 Suppl 1: p. S10-4.
8. Hayden, M.S., A.P. West, and S. Ghosh, NF-kappaB and the immune response. Oncogene, 2006. 25(51): p. 6758-80.
9. Salminen, A., et al., Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev, 2008. 7(2): p. 83-105.
10. Kobayashi, S.D. and F.R. DeLeo, Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med, 2009. 1(3): p. 309-33.
11. Amulic, B., et al., Neutrophil function: from mechanisms to disease. Annu Rev Immunol, 2012. 30: p. 459-89.
12. Borregaard, N., O.E. Sørensen, and Theilgaard-Mönch, Neutrophil granules: a library of innate immunity proteins. Trends in Immunology, 2007. 28(8): p. 340-5.
13. Volker Brinkmann, et al., Neutrophil extracellular traps kill bacteria. Science, 2004. 303: p. 1532-5.
14. Anderson B. Guimara˜es-Costaa, et al., Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. PNAS, 2009. 106(16): p. 6748-53.
15. Urban, C.F., et al., Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol, 2006. 8(4): p. 668-76.
16. Beiter, K., et al., An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol, 2006. 16(4): p. 401-7.
17. Kaplan, M.J. and M. Radic, Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol, 2012. 189(6): p. 2689-95.
18. Steinberg BE and G. S, Unconventional roles of the NADPH oxidase: signaling, ion homeostasis and cell death. Sci. STKE, 2007. 379: p. pe11.
19. Fuchs, T.A., et al., Novel cell death program leads to neutrophil extracellular traps. J Cell Biol, 2007. 176(2): p. 231-41.
20. Pilsczek, F.H., et al., A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol, 2010. 185(12): p. 7413-25.
21. Brinkmann, V. and A. Zychlinsky, Beneficial suicide: why neutrophils die to make NETs. Nature Reviews Microbiology, 2007. 5: p. 577-82.
22. Neeli, I., et al., Regulation of extracellular chromatin release from neutrophils. J Innate Immun, 2009. 1(3): p. 194-201.
23. Yipp, B.G. and P. Kubes, NETosis: how vital is it? Blood, 2013. 122(16): p. 2784-94.
24. Yipp, B.G., et al., Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nature Medicine, 2012. 18(9): p. 1386-93.
25. Brinkmann, V. and A. Zychlinsky, Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol, 2012. 198(5): p. 773-83.
26. Clark, S.R., et al., Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 2007. 13(4): p. 463-9.
27. Douda, D.N., et al., SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A, 2015. 112(9): p. 2817-22.
28. Jorch, S.K. and P. Kubes, An emerging role for neutrophil extracellular traps in noninfectious disease. Nature Medicine, 2017. 23(3): p. 279-87.
29. Delgado-Rizo, V., et al., Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol, 2017. 8: p. 81.
30. Wartha, F., et al., Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol, 2007. 9(5): p. 1162-71.
31. Byrd, A.S., et al., An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol, 2013. 190(8): p. 4136-48.
32. Urban, C.F., et al., Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog, 2009. 5(10): p. e1000639.
33. Lappann, M., et al., In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol Microbiol, 2013. 89(3): p. 433-49.
34. Parseghian, M.H. and K.A. Luhrs, Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem Cell Biol, 2006. 84(4): p. 589-604.
35. Martinon, F. and L.H. Glimcher, Gout: new insights into an old disease. J Clin Invest, 2006. 116(8): p. 2073-5.
36. F S Di Giovine, et al., Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. The Journal of Immunology, 1987. 138(10): p. 3213-8.
37. Francesco S. di Giovine, et al., Urate crystals stimulate production of tumor necrosis factor alpha from human blood monocytes and synovial cells. Cytokine mRNA and protein kinetics, and cellular distribution. J Clin Invest 1991. 87: p. 1375-81.
38. Terkeltaub, et al., Monocyte derived neutrophil chemotactic factor interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum, 1991. 34(7): p. 894-903.
39. Mitroulis, I., et al., Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS One, 2011. 6(12): p. e29318.
40. Schett, G., et al., Why does the gout attack stop? A roadmap for the immune pathogenesis of gout. RMD Open, 2015. 1(Suppl 1): p. e000046.
41. Baumgart, D.C. and W.J. Sandborn, Crohn's disease. The Lancet, 2012. 380(9853): p. 1590-605.
42. Ha, F. and H. Khalil, Crohn’s disease: a clinical update. Therapeutic Advances in Gastroenterology, 2015. 8(6): p. 352-9.
43. Vong, L., et al., Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J Immunol, 2014. 192(4): p. 1870-7.
44. Ungaro, R., et al., Ulcerative colitis. The Lancet, 2017. 389(10080): p. 1756-70.
45. Feuerstein, J.D. and A.S. Cheifetz, Ulcerative colitis: epidemiology, diagnosis, and management. Mayo Clin Proc, 2014. 89(11): p. 1553-63.
46. Bennike, T.B., et al., Neutrophil extracellular traps in ulcerative colitis: a Proteome analysis of intestinal biopsies. Inflamm Bowel Dis, 2015. 21(9): p. 2052-67.
47. Jr, L.E., Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 2004. 126(6): p. 1504-17.
48. Oh, S.Y., et al., Comparison of experimental mouse models of inflammatory bowel disease. Int J Mol Med, 2014. 33(2): p. 333-40.
49. Perse, M. and A. Cerar, Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol, 2012. 2012: p. 718617.
50. Okayasu, I., et al., A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 1990. 98(3): p. 694-702.
51. Ruyssers, N.E., et al., Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflamm Bowel Dis, 2009. 15(4): p. 491-500.
52. Chassaing, B., et al., Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol, 2014. 104: p. Unit 15 25.
53. Wirtz, S., et al., Chemically induced mouse models of intestinal inflammation. Nat Protoc, 2007. 2(3): p. 541-6.
54. Shuji, K., T. Shigenobu, and M. Masatoshi, Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp. Anim., 2000. 49(1): p. 9-15.
55. Maxwell, J.R., et al., Methods of inducing inflammatory bowel disease in mice. Curr Protoc Pharmacol, 2009. Chapter 5: p. Unit5 58.
56. Zaki, M.H., et al., The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell, 2011. 20(5): p. 649-60.
57. Laroui, H., et al., Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One, 2012. 7(3): p. e32084.
58. Shuji, K., T. Shigenobu, and M. Masatoshi, Tissue distribution of dextran sulfate sodium (DSS) in the acute phase of murine DSS-Induced colitis. J. Vet. Med. Sci, 1999. 61(1): p. 67-70.
59. Wera, O., P. Lancellotti, and C. Oury, The dual role of neutrophils in inflammatory bowel diseases. J Clin Med, 2016. 5(12): p. 118-41.
60. Tissue injury in neutrophilic inflammation. Inflammation Research, 1997. 46(10): p. 382-91.
61. SJ, W., Tissue disruption by neutrophils. The New England Journal of Medicine, 1989. 320(6): p. 365-76.
62. Shigemi Chiba and N. Yoshizawa, Involvement of neutrophil elastase in crescentic glomerulonephritis. Human Pathology, 1997. 28(6): p. 720-8.
63. Di Cesare Mannelli, L., et al., Effects of the neutrophil elastase inhibitor EL-17 in rat adjuvant-induced arthritis. Rheumatology (Oxford), 2016. 55(7): p. 1285-94.
64. Kolaczkowska, E., et al., Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun, 2015. 6: p. 6673.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69078-
dc.description.abstract發炎性腸道疾病(inflammatory bowel diseases, IBDs) 指的是一種由腸道內菌相之改變以及腸道發炎所引起之慢性疾病。發炎性腸道疾病主要可以分為兩種:潰瘍性結腸炎(Ulcerative colitis) 以及克隆氏症(Crohn’s disease)。當腸道發炎時,哺乳動物體內最多的白血球為多核型白血球(PMNs),又稱嗜中性白血球,在初級免疫反應當中扮演著第一道防線的角色。嗜中性白血球可藉由吞噬作用(phagocytosis)以及脫顆粒作用(degranulation)來達到對抗病原的目的。而在2004年,Brinkmann等人發現了一個由解縮的染色質絲以及一群蛋白所構成的胞外網狀結構,統稱為嗜中性胞外網狀結構(Neutrophil Extracellular Traps, NETs),嗜中性胞外網狀結構可以藉由其網狀的結構來捕捉病原體,進而幫助病原體之清除。先前的研究指出,在克隆氏症的病人身上發現嗜中性包外網狀結構之前驅物,過氧化物(Reactive oxygen species, ROS)表現量的上升。在另一篇研究中,作者利用蛋白質體學的方式,在潰瘍性結腸炎的病人身上偵測到大量的嗜中性白血球以及嗜中性胞外網狀結構相關蛋白質的表現,但嗜中性胞外網狀結構對於潰瘍性結腸炎是好是壞並不了解。因此在本篇研究當中,我利用dextran sulfate sodium (DSS) 誘發小鼠腸炎模式,並施打DNase I (一種已知的嗜中性胞外網狀結構之抑制劑),來探討胞外網狀結構在此模式下扮演的角色。結果顯示在經DSS誘導發炎的小鼠當中,有施打DNase I的小鼠,其體重下降的幅度以及臨床指標分數均較對照組來的低,且其腸子長度縮短的情形也受到抑制。在免疫螢光染色的部分,我們偵測了胞外網狀結構的重要蛋白,瓜胺酸化之組蛋白H3 (citrullinated histone 3),結果顯示,在經DSS誘導發炎的小鼠當中,再施打DNaseI的小鼠中,其組蛋白有減少的趨勢。最後在組織切片染色的結果顯示,在DSS誘導發炎的小鼠當中,施打DNase I的小鼠,其腸道受到破壞的情形趨於減緩。綜合以上結果,可推論在DSS誘導小鼠發炎的情況之下,抑制胞外網狀結構可減緩腸道發炎之症狀。zh_TW
dc.description.abstractInflammatory bowel disease (IBD) refers to the chronic disease that is due to the disruption of immune homeostasis against gut microbiota. There are two major types of inflammatory bowel diseases: ulcerative colitis (UC) and Crohn’s disease (CD). During the intestinal inflammation, polymorphonuclear leukocytes (PMN), or neutrophils, the most abundant leukocytes in mammals, are considered as the first line of innate immune defense. Neutrophils utilize phagocytosis and degranulation to control microbe infection. In 2004, Brinkmann and colleagues discovered neutrophils also form an extracellular structure composed of decondensed chromatin fibers and a set of proteins, which terms as neutrophil extracellular traps (NETs) when they encounter pathogens. Enhanced ROS production, a precursor of NET formation, is found in the inflamed intestine of patients with Crohn’s disease. A recent proteomic analysis further detected elevated NET-associated proteins in the colons of ulcerative colitis patients compared to those of control groups. However, it is still unknown whether NET formation is beneficial or harmful to ulcerative colitis. In this study, I administered Deoxyribonuclease I (DNase I), an inhibitor of NET into mice with dextran sodium sulfate (DSS)-induced colitis. Body weight and clinical score were examined every day. The results indicated that the group of DSS-induced colitis mice with DNase I treatment manifested a decreased body weight change and lower clinical score when compared to the control group (without DNase I treatment) after DSS administration. Repression of NETs also ameliorate DSS-induced colon shortening. Immunofluorescence staining results suggested that there were lower amount of citrullinated histone 3, a component of NET, in the colons of mice treated with DSS and DNase I when compared to mice with DSS administration. Histological damage result suggested that administration with DNase I protected mice form disruption of intestinal architecture in DSS-treatment mice. Overall, our results indicated DNase I treatment ameliorated the development of DSS-induced colitis in mice.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:50:44Z (GMT). No. of bitstreams: 1
ntu-106-R04b21029-1.pdf: 2141334 bytes, checksum: 92d04eb5e731b1d6abf33364c611bc68 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iv
Abstract vi
Contents viii
List of figures xi
Chapter 1 Introduction 1
1.1.1 Inflammatory bowel disease (IBD) 1
1.1.2 Innate immune response in IBD 1
1.2.1 Neutrophils 2
1.2.2 Neutrophil extracellular traps (NETs) and NETosis 3
1.2.3 Double-edged swords of NET 4
1.2.4 NETosis and host defense 5
1.2.5 Autoinflammatory diseases and NET 5
1.3.1 IBD-associated mouse models 7
1.3.2 DSS-induced colitis in mouse model 8
Rational 9
Chapter 2 Material and method 10
Mice 10
DSS-induced colitis 10
Histological staining 11
Immunohistochemistry for colon section 12
Statistical analysis 13
Chapter 3. Result 14
1.DNase I treatment did not reduce body weight loss in mice with DSS-induced colitis 14
2.Administration of DNase I for 8 days redcued the clinical symptoms in mice with DSS-induced colitis 15
3.DNase I treatment ameliorated DSS-induced colon shortening 16
4.Immune cell infiltration into colon and intestinal architecture were slightly improved in DNase I-treated mice with DSS-induced colitis 17
5.Expression of citrullinated histone H3 in colon was decreased after treatment of DNase I in DSS-induced colitis mice 18
6.DNase I treatment also protected mice from lower dose (2%) of DSS administration 19
Chapter 4. Discussion 21
Reference 25
dc.language.isoen
dc.subject發炎性腸道疾病zh_TW
dc.subject潰瘍性結腸炎zh_TW
dc.subject嗜中性白血球zh_TW
dc.subject嗜中性胞外網狀結構zh_TW
dc.subjectDNase Izh_TW
dc.subjectDNase Ien
dc.subjectinflammatory bowel diseaseen
dc.subjectulcerative colitisen
dc.subjectneutrophilen
dc.subjectneutrophil extracellular trapsen
dc.title去氧核糖核酸酶I對於DSS誘發小鼠腸炎模式之影響zh_TW
dc.titleThe effects of DNase I treatment on mouse experimental DSS-induced colitisen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張惠雯,劉旻禕
dc.subject.keyword發炎性腸道疾病,潰瘍性結腸炎,嗜中性白血球,嗜中性胞外網狀結構,DNase I,zh_TW
dc.subject.keywordinflammatory bowel disease,ulcerative colitis,neutrophil,neutrophil extracellular traps,DNase I,en
dc.relation.page51
dc.identifier.doi10.6342/NTU201703397
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved