請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69075完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方煒 | |
| dc.contributor.author | Po-Lin Wu | en |
| dc.contributor.author | 吳柏林 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:50:34Z | - |
| dc.date.available | 2018-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | 1. 方煒。2001。自動化植物工廠。設施栽培自動化專輯。103-111。
2. 方煒。2010。以植物工廠生產農作物與綠能產業研究發展。臺灣大學生物產業機電工程學系學報。 3. 方煒。2011。太陽光型植物工廠-永續性的先進植物工廠。豐年社。 4. 方煒。2011。完全控制型植物工廠。豐年社。 5. 方煒。2012。臺灣植物工廠發展現況與展望。精密設施工程與植物工場實用化技術研討會。16-23。臺南:臺南區農業改良場。 6. 方煒。2014。泛用型水耕栽培床架。中華民國專利第 M489475 號。 7. 王慧媛。2010。環境控制下波士頓萵苣兩階段立體化栽培模式之探討。碩士論文。臺北:臺灣大學生物產業機電工程學研究所。 8. 行政院衛生福利部國民健康署。2012。衛福部國民健康署_每日飲食指南手冊。臺北:行政院衛生福利部國民健康署。網址:www.hpa.gov.tw/BHPNet/Web/Books/manual_content25.asp。 9. 邱偉豪。2009。控制環境內波士頓萵苣立體化栽培之研究。碩士論文。臺北:臺灣大學生物產業機電工程學研究所。 10. 徐善德、廖玉琬。2009。植物生理學。出版。臺北:偉明圖書有限公司 11. 楊其長、魏靈玲、劉文科、程瑞鋒。2012。植物工廠系統與實踐。初版。北京:化學工業出版社。 12. 楊書瑋。2016。降低潮汐式淹灌系統之養液溫度允許於較高氣溫環境下栽培波士頓萵苣。碩士論文。臺北:臺灣大學生物產業機電工程學研究所。 13. 聞婧、程瑞鋒、孟力力、韋金河、楊其長、張俊。2012。超聲波霧化栽培裝置的研制和應用效果。江西農業學報。 14. 鄭志榮。2002。園藝設施學。初版。北京:中國農業出版社。 15. 蕭伯翰。2009。植物立體化栽培控制環境之遠端監控。碩士論文。臺北:臺灣大學生物產業機電工程學研究所。 16. Albright, L. D., A. J. Both, and A. J. Chiu. 2000. Controlling greenhouse light to a consistent daily integral. Transactions of the ASAE 43(2): 421-431. 17. Ang, K. H., G. Chong, and Y. Li. 2005. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4), 559-576. 18. Berry, J. A., and J. K. Raison. 1981. Responses of macrophytes to temperature. In Physiological Plant Ecology I, 277-338. 19. Both, A. J., L. D. Albright, and R. W. Langhans. 1997. Coordinated management of daily PAR integral and carbon dioxide for hydroponic lettuce production. II Modelling Plant Growth, Environmental Control and Farm Management in Protected Cultivation 456, 45-52. 20. Gaudreau, L., J. Charbonneau, L. P. Vézina, and A. Gosselin. 1994. Photoperiod and photosynthetic photon flux influence growth and quality of greenhouse-grown lettuce. HortScience, 29(11), 1285-1289. 21. Gur, A., J. Hepner, and Y. Shulman. 1979. The influence of root temperature on apple trees. IV. The effect on the mineral nutrition of the tree. Journal of Horticultural Science, 54(4), 313-321. 22. Hang, C. C., K. J. Astrom, and W. K. Ho. 1991. Refinements of the Ziegler-Nichols tuning formula. In IEE Proceedings D-Control Theory and Applications, 138(2), 111-118. 23. Harding, S. A., J. A. Guikema, and G. M. Paulsen. 1990. Photosynthetic decline from high temperature stress during maturation of wheat I. Interaction with senescence processes. Plant Physiology, 92(3), 648-653. 24. Hayden, A. L. 2006. Aeroponic and hydroponic systems for medicinal herb, rhizome, and root crops. HortScience, 41(3), 536-538. 25. He, S. Z., S. Tan, F. L. Xu, and P. Z. Wang. 1993. Fuzzy self-tuning of PID controllers. Fuzzy Sets and Systems, 56(1), 37-46 26. Kim, H. H., R. M. Wheeler, J. C. Sager and G. D. Goins. 2004. A comparison of growth and photosynthetic characteristics of lettuce grown under red and blue light-emitting diodes (LEDs) with and without supplemental green LEDs. Acta Hort 659: 467-475. 27. Kojima, K., and H. Suhardiyanto. 1991. Studies on the zone cooling system in greenhouse, 1: Performance of the system in a model-sized greenhouse. Environment Control in Biology. 28. Kotynia, K. 2015. Generation of low temperatures by the magnetic cooling method. Technical Issues, 2015(2), 24-31. 29. Kratsch, H. A., W. R. Graves, and R. J. Gladon. 2006. Aeroponic system for control of root-zone atmosphere. Environmental and Experimental Botany, 55(1), 70-76. 30. Kuroyanagi, T., and G. M. Paulsen. 1988. Mediation of high‐temperature injury by roots and shoots during reproductive growth of wheat. Plant, Cell & Environment, 11(6), 517-523. 31. Mamdani, E. H. 1974. Application of fuzzy algorithms for control of simple dynamic plant. In Proceedings of the Institution of Electrical Engineers, 121(12), 1585-1588. 32. Marsh, L. S. 1987. A model of greenhouse hydroponic lettuce production: Daily selection of optimum air temperatures and comparison of greenhouse covers, Doctoral Dissertation, Cornell University. 33. Mendel, J. M. 1995. Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE, 83(3), 345-377. 34. Pecharsky, V. K., and K. A. Gschneidner Jr. 1999. Magnetocaloric effect and magnetic refrigeration. Journal of Magnetism and Magnetic Materials, 200(1), 44-56. 35. Peterson, L. A., and A. R. Krueger. 1988. An intermittent aeroponics system. Crop Science, 28(4), 712-713. 36. Salisbury, F. B., and C. W. Ross. 1992. Plant Physiology. 4th. Edn. Belmont, CA. Wadsworth. 37. Simons, R. E., and R. C. Chu. 2000. Application of thermoelectric cooling to electronic equipment: a review and analysis. In Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE, 1-9. 38. Soffer, H., and D. W. Burger. 1988. Effects of dissolved oxygen concentrations in aero-hydroponics on the formation and growth of adventitious roots. Journal of the American Society for Horticultural Science, 113(2), 218-221. 39. Thompson, H. C., R. W. Langhans, A. J. Both, and L. D. Albright. 1998. Shoot and root temperature effects on lettuce growth in a floating hydroponic system. Journal of the American Society for Horticultural Science, 123(3), 361-364. 40. Vlahos, J. C., E. Heuvelink, and G. F. P. Martakis. 1991. A growth analysis study of three achimenes cultivars grown under three light regimes. Scientia Horticulturae 46(3): 275-282. 41. Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199-223. 42. Wurr, D. C. E., J. R. Fellows, and A. J. Hambidge. 1992. Environmental factors influencing head density and diameter of crisp lettuce cv. Saladin. Journal of Horticultural Science, 67(3), 395-401. 43. Xu, Q., B. Huang, and Z. Wang. 2002. Photosynthetic responses of creeping bentgrass to reduced root-zone temperatures at supraoptimal air temperature. Journal of the American Society for Horticultural Science, 127(5), 754-758. 44. Zadeh, L. A. 1965. Fuzzy sets. Information and control, 8(3), 338-353. 45. Ziegler, J. G., and N. B. Nichols. 1942. Optimum settings for automatic controllers. trans. ASME, 64(11). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69075 | - |
| dc.description.abstract | 本研究旨在建立適合家電型植物栽培設備使用的降溫系統,並找到最佳栽培系統與相對應的養液溫度,再以此策略提升家電型植物栽培設備的栽培效率。先以致冷晶片建立適合家電型植物栽培設備使用的降溫系統,比較以不同控制策略的控溫結果與總耗能,並進行不同栽培系統在高氣溫下以不同養液溫度栽培波士頓萵苣與皺葉萵苣的試驗。最後再結合所建立的降溫系統與最佳栽培系統的家電型植物栽培設備進行栽培試驗,驗證改善策略之可行性。
研究結果顯示以 Fuzzy PID 控制策略作為致冷晶片降溫系統的控制方法,與傳統的開關控制策略相比較能夠降低約 44 % 的系統總耗能。不同栽培系統在高氣溫下降低不同養液溫度的栽培結果,發現使用潮汐式栽培系統並將養液溫度降低至 25°C 的條件下栽培波士頓萵苣,能夠得到最佳的栽培效率,而皺葉萵苣則無法以此策略來提升栽培效率。最後套用改善策略於家電型植物栽培設備並栽培波士頓萵苣,能夠得到 81.1 g 的地上部鮮重,與原始設備相比,能夠提升 174.6 % 的總產量與 33.7 % 的栽培效率。 以上述設備為基礎,本研究針對兩種栽培情境作探討,其一為三口之家的家庭,得知使用約 0.6 坪與 1.1 坪的土地面積,即能夠達到供給 50 % 與 100% 的每日蔬菜需求量 (每日 1200 g) 的目標,且平均一株菜的生產成本約為 21 元。其二為提供 10% 的台北市人口 50 % 的每日蔬菜需求量,這相當於可每日產出約 54 噸的蔬菜。由於產地即為消費地,完全沒有運輸成本,且具有低碳足跡與幾乎為零的食品里程數,因此驗證了使用本研究的栽培設備搭配適當的栽培條件能夠實現低碳環保家用型植物工廠的理念。 | zh_TW |
| dc.description.abstract | The goal of this study is to establish a cooling system suitable for home appliance style plant cultivation equipment and to find the optimal cultivation system and the corresponding root zone temperature to improve the efficiency of the cultivation equipment. First, we establish the cooling system for the nutrient solution using thermoelectric chips and then compared the cooling results and total energy consumption of different control methods. After that, we cultivate butter lettuce and frilly lettuce using different cultivation systems under different root zone temperatures at high air temperature to find the optimal cultivation system and root zone temperature. Finally, we cultivate butter lettuce using the home appliance style plant cultivation equipment combining cooling system and the optimal cultivation system to verify the feasibility of the improving strategy.
The results show that the cooling system can save about 44% of the total energy consumption of the system by using Fuzzy PID as the system control method compared with traditional on-off control. Using the ebb and flood cultivation system and maintaining root zone temperature at 25°C has the highest efficiency. However, the strategy doesn’t improve the efficiency for the growth of frilly lettuce. Finally, we find that using improving strategy on the home appliance style plant cultivation equipment produces butter lettuce with shoot weight of 81.8 g. Also, it can increase 174.6% of the total yield and 33.7% of the efficiency compared to the original cultivation equipment. We simulate two kinds of cultivation situation based on the above equipment. First, When the family of three is the simulation object, the family just needs to provide 1.76 m2 and 3.52 m2 of land area to achieve the goal of producing 50% and 100% of daily demand for vegetables (i.e. 1200 g). Also, the average production cost is about $21. Second, When Taipei is the simulation object, it can produce about 54 tons of vegetables per day in the case of that only 10% of households in Taipei can achieve the goal of producing 50% of daily demand for vegetables. Moreover, there is no transportation cost because the city becomes both places of production and consumption. The carbon footprint is low and food miles could be almost zero. Therefore, it is verified that using the cultivation equipment in this study with the proper cultivation conditions can accomplish the concept of low-carbon and eco-friendly household plant factory. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:50:34Z (GMT). No. of bitstreams: 1 ntu-106-R04631004-1.pdf: 3251560 bytes, checksum: 1ec87a720b86fc6e401f708acdde48a9 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii 目錄 v 圖目錄 viii 表目錄 x 第一章 前言與研究目的 1 1.1 前言 1 1.2 研究目的 3 第二章 文獻探討 5 2.1 植物工廠 5 2.1.1 定義與發展沿革 5 2.1.2 分類 7 2.2 光 9 2.2.1 光量對植物之影響 9 2.2.2 光譜對植物之影響 9 2.3 栽培系統 10 2.3.1 湛水式循環系統 11 2.3.2 薄膜式循環系統 11 2.3.3 打氣式栽培系統 12 2.3.4 潮汐式淹灌系統 13 2.3.5 氣霧耕栽培系統 14 2.4 高氣溫環境下降低養液溫度對植物生長之影響 15 2.4.1 光合作用之影響 15 2.4.2 乾重與鮮重之影響 17 2.5 降低溫度之方法 19 2.5.1 熱泵系統 19 2.5.2 熱磁效應 19 2.5.3 致冷晶片 20 2.6 系統控制方法 21 2.6.1 比例-積分-微分控制 21 2.6.2 模糊控制 23 2.6.3 比例-積分-微分控制結合模糊理論 24 第三章 材料與方法 27 3.1 試驗場所與栽培設備 27 3.1.1 環控室 27 3.1.2 家電型植物栽培設備 30 3.2 量測儀器與水耕資材 31 3.3 栽培作物與養液成分 32 3.3.1 栽培作物 32 3.3.2 養液成分 33 3.4 作物生長評估參數 34 3.4.1 生長性狀檢測 34 3.4.2 硝酸鹽含量檢測 34 3.5 研究方法 35 3.5.1 商業化家電型植物栽培設備之栽培試驗 35 3.5.2 降溫系統之建立 39 3.5.3 比較不同栽培系統之栽培效率 46 3.5.4 改善策略可行性之驗證 54 第四章 結果與討論 59 4.1 商業化家電型植物栽培設備之栽培試驗 59 4.1.1 光量對家電型植物栽培設備栽培能力影響測試 59 4.1.2 溫度對家電型植物栽培設備栽培能力影響測試 61 4.1.3 小結 63 4.2 降溫系統之建立 64 4.2.1 系統降溫測試 64 4.2.2 效能最佳化 65 4.3 比較不同栽培系統之栽培效率 74 4.3.1 栽培結果 74 4.3.2 栽培效率 82 4.3.3 小結 89 4.4 改善策略之驗證 90 4.4.1 栽培結果 90 4.4.2 栽培效率 93 4.4.3 小結 95 4.5 栽培情境模擬 96 4.5.1 家庭的栽培情境模擬 96 4.5.2 都市的栽培情境模擬 98 4.5.3 小結 98 第五章 結論 99 參考文獻 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 家用型植物工廠 | zh_TW |
| dc.subject | 致冷晶片 | zh_TW |
| dc.subject | 模糊控制 | zh_TW |
| dc.subject | PID 控制 | zh_TW |
| dc.subject | 家電型植物栽培設備 | zh_TW |
| dc.subject | 都市農業 | zh_TW |
| dc.subject | Thermoelectric Chips | en |
| dc.subject | Urban Agriculture | en |
| dc.subject | Household Plant Factory | en |
| dc.subject | Home Appliance Style Plant Cultivation Equipment | en |
| dc.subject | PID Control | en |
| dc.subject | Fuzzy Control | en |
| dc.title | 提升家電型植物栽培設備效率之研究 | zh_TW |
| dc.title | A Study on Improving Efficiency of Home Appliance Style Plant Cultivation Equipment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅筱鳳,黃振康 | |
| dc.subject.keyword | 家電型植物栽培設備,家用型植物工廠,都市農業,致冷晶片,模糊控制,PID 控制, | zh_TW |
| dc.subject.keyword | Home Appliance Style Plant Cultivation Equipment,Household Plant Factory,Urban Agriculture,Thermoelectric Chips,Fuzzy Control,PID Control, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU201703144 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
