Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6906
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光(Chi-Kuang Sun)
dc.contributor.authorYueh-Chun Wuen
dc.contributor.author吳岳駿zh_TW
dc.date.accessioned2021-05-17T09:20:51Z-
dc.date.available2013-03-19
dc.date.available2021-05-17T09:20:51Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-15
dc.identifier.citation[1.1] B. Bonello, B. Perrin, E. Romatet, J.C. Jeannet, “Application of the picoseconds ultrasonic technique to the study of elastic and time-resolved thermal properties of materials” Ultrasonic, 35, 223 (1997).
[1.2] G. Tas, J.J. Loomis, H.J. Maris, A.A. Balies and L.E. Seiberling. “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation.” Appl. Phys. Lett. 72. 2235 (1998).
[1.3] M. Hu, X. Wang, G. Hartland, P. Mulvaney, J. Juste, and J. Saders, “Vibrational response of nanorods to ultrafast laser induced heating: Theoretical and experimental analysis,” J. Am. Chem. Soc, 125, 14925 (2003).
[1.4] H.N. Lin, R.J. Stoner, H.J. Maris, “Nondestructive testing of microstructures by picosecond ultrsonics,” J. Nondestruct. Eval. 9, 239 (1990).
[1.5] G.A. Antonelli and H.J. Maris, S.G. Malhotra and James M.E. Harper, “Picosecond ultrasonic study of the vibrational modes of a nanostructure,” J. Appl. Phys., 91, 3261 (2002).
[1.6] C. Thomsen, H. T. Grahn, H.J. Maris and J. Tauc, “Surface generation and detection of photons by picoseconds light pulses,” Phys. Rev. B., 34, 4129 (1986.)
[1.7] C. Thomsen, J. Strait, Z. Vardeny, H.J. Maris and J. Tauc, “Coherent phonon generation and detection by picoseconds light pulses,” Phys. Rev. Lett., 53, 989 (1984).
[1.8] T.C. Zhu, H.J. Maris, and J. Tauc, “Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440GHz,” Phys. Rev. B., 44, 4281
(1991).
[1.9] H.N. Lin, R.J. Stoner, H.J. Maris and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picoseconds acoustic interferometry,” J. Appl. Phys, 69, 3816 (1990).
[1.10] O.B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picoseconds acoustics,” J. Appl. Phys, 71, 1617 (1992).
[1.11] O.B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B., 49, 9985 (1994).
[1.12] H.Y. Hao and H.J. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B., 64, 064302 (2001).
[1.13] G. Tas and H.J. Maris, “Picosecond ultrasonic study of phonon reflection from solid-liquid interfaces,” Phys. Rev. B., 55 1852 (1997).
[1.14] X.F. Peng, K.Q. Chen, B.S. Zou and Y. Zhang, “Ballistic thermal conductance in a three dimensional quantum wire modulated with the stub structure.” Appl. Phys. Lett., 90, 193502 (2007).
[1.15] Y.C. Wen, J.H. Sun, C. Dais, D. Grutzmacher, T.T. Wu, J.W. Shi, and C.K. Sun, “Three-dimesional phononic nanocrystal composed of ordered quantum dots.” Appl. Phys. Lett., 96, 123113 (2010).
[1.16] K.H. Lin, C.M. Lai, C.C Pai, J.I. Chyi, J.W. Shi, S.Z. Sun, C.F. Chang and C.K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nature Nanotech., 2, 704 (2007).
[1.17] Y.H. Chen. “Coherent Opto-Acoustic Behaviors of GaAs Nanorods” Master Thesis, (2009).
[1.18] C. Shank, R. Fork, R. Leheny, and J. Shah, 'Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution,' Phys. Rev. Lett., 42, 112 (1979).
[1.19] D. Kim and P. Yu, 'Hot-electron relaxations and hot phonons in GaAs studied by subpicosecond raman scattering,' Phys. Rev. B, 43, 4158 (1991).
[1.20] S. Wu, P. Geiser, J. Jun, J. Karpinski, and R. Sobolewski, 'Femtosecond optical generation and detection of coherent acoustic phonons in GaN single crystals,' Phys. Rev. B, 76, 85210 (2007).
[1.21] C.K. Sun, J.C. Liang, and X.Y. Yu, 'Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,' Phys. Rev. Lett., 84, 179 (2000).
[1.22] S.O. Mariager, D.K. Khakhulin, H. T. Lemke, K.S. Kjar, L. Guerin, L. Nuccio, C.B. Sorensen and M.M. Nielsen and R. Feidenhans’l, “Direct observation of acoustic oscillations in InAs Nanowires,” Nano. Lett., 10, 2461-2465 (2010).
[1.23] P. Yu, J. Tang, and S. H. Lin, 'Photoinduced structural dynamics in laser-heated nanomaterials of various shapes and sizes,' The Journal of Physical Chemistry C, 113, 7480 (2009).
[1.24] H. Petrova, C.H. Lin, S. de Liejer, M. Hu, J.M. Mclellan, A.R. Siekkinen, B.J. Wiley. M. Marquez, Y. Xia, J.E. Sader, G.V. Hartland, 'Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,' J. Am. Chem. Soc., 126, 094709 (2007).
[1.25] T.D. Kruss and F.W. Wise. “Coherent acoustic phonon in a semiconductor quantum dot.” Phys. Rev. Lett., 79, 5102-5105 (1997).
[2.1] C. Thomsen, H. T. Grahn, H.J. Maris and J. Tauc, “Surface generation and detection of photons by picoseconds light pulses,” Phys. Rev. B., 34, 4129 (1986.)
[2.2] O. Matsuda, T. Tachizaki, T. Fukui, J.J. Bauberg and O.B. Wright, “ Acoustic phonon generation and detecton in GaAs/Al0.3Ga0.7As quantum wells with picoseconds laser pulse.” Phys. Rev. B., 71, 115330 (2005)
[2.3] P. Babilotte, P. Ruello, T. Pezeril, G. Vaudel, D. Mounier, J.-M. Breteau and V. Gusev. “ Transition from piezoelectric to deformation potential mechanism of hypersound phtogeneration in n-doped GaAs semiconductors.” J. Appl. Phys, 109, 064909 (2011).
[2.4] C.K. Sun, J.C. Liang, X.Y. Yu. 'Coherent Acoustic Phonon Oscillations in Semiconductor Multiple Quantum Wells with Piezoelectric Fields.' Physical Review Letters 84(1): 179. (2000)
[2.5] H.N. Lin, R.J. Stoner, H.J. Maris, “Nondestructive testing of microstructures by picosecond ultrsonics,” J. Nondestruct. Eval. 9, 239 (1990).
[2.6] C. T. Yu, K.H. Lin, C.H. Hsieh, C.C. Pan, J.I. Chyi and C.K. Sun. “Generation of frequency-tunable nanoacoustic waves by optical coherent control.” Appl. Phys. Lett., 87, 093114 (2005)
[3.1] G.V. Hartland. “Coherent Excitation of Vibration Modes in Metallic Nanoparticles.” Annu. Rev. Phys. Chem. 57, 403 (2006).
[3.2] M. Yamaguchi, J. Liu, D. Ye, and T. M. Lu. “Coherent acoustic vibration in silicon submicron spiral arrays.” J. Appl. Phys 106, 033517 (2009).
[3.3] A. Neleta, A. Cruta, A. Arboueta, N. Del. Fattia, F. Valléea, H. Portalèsb, L .Saviotc, E. Duvalb. “Acoustic vibrations of metal nanoparticles: high order radial mode detection.” Appl. Surf. Sci. 226, 209 (2004).
[3.4] M. Hu, X. Wang, G. Hartland, P. Mulvaney, J. Juste, and J. Saders, “Vibrational response of nanorods to ultrafast laser induced heating: Theoretical and experimental analysis,” J. Am. Chem. Soc, 125, 14925 (2003).
[3.5] S.O. Mariager, D.K. Khakhulin, H. T. Lemke, K.S. Kjar, L. Guerin, L. Nuccio, C.B. Sorensen and M.M. Nielsen and R. Feidenhans’l, “Direct observation of acoustic oscillations in InAs Nanowires,” Nano. Lett., 10, 2461-2465 (2010).
[3.6] D. H. Hurley and K. L. Telschow. “Picosecond surface acoustic waves using a suboptical wavelength absorption grating.” Phys. Rev. B, 66, 153301 (2002).
[3.7] J.-F. Robillard, A. Devos, and I. Roch-Jeune. “Time-resolved vibrations of two-dimensional hypersonic phononic crystals.” Phys. Rev. B, 76, 092301 (2007)
[3.8] J.-F. Robillard, A. Devos, I. Roch-Jeune, and P. A. Mante. “Collective acoustic modes in various two-dimensional crystals by ultrafast acoustics: Theory and experiment.” Phys. Rev. B, 78, 064302 (2008).
[3.9] C. Thomsen, H. T. Grahn, H. J. Maris and J. Tauc. “Picosecond interferometeric technique for study of phonons in the brillouin frequency range.” Opt. Commun., 60, 55 (1986)
[3.10] R. Liu, G.D. Sanders C.J. Stanton, C. S. Kim, J.S. Yahng, Y.D. Jho, K. J. Jho, K. J. Yee, E. Oh, and D. S. Kim. “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in heterostructures.” Phys. Rev. B., 72, 195335 (2005)
[3.11] A. Devos and R. Côte. “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect.” Phys. Rev. B., 70, 125208 (2004)
[3.12] Y. C. Wen, J. H. Sun, C. Dais, D. Grützmacher, T. T. Wu, J. W. Shi, and C. K. Sun. “Three-dimensional phononic nanocrystal composed of ordered quantum dots.” Appl. Phys. Lett. 96, 123113 (2010).
[3.13] H.N. Lin, R.J. Stoner, H.J. Maris and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picoseconds acoustic interferometry,” J. Appl. Phys, 69, 3816 (1990).
[3.14] Yu, P., J. Tang, et al. 'Photoinduced Structural Dynamics in Laser-Heated Nanomaterials of Various Shapes and Sizes.' The Journal of Physical Chemistry C 113(17): 7480-7480 (2009).
[4.1] C. Kittel, Introduction to Solid State Physics. 8th edition. New York: Wiley (2005).
[4.2] Sebastain G. Volz and G. Chen, “Molecular dynamics simulation of thermal conductivity of silicon nanowires,” Appl. Phys. Lett., 75, 2056 (1999).
[4.3] S.J.A. Koh, H.P. Lee, C. Lu and Q.H. Cheng, “Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain rate effects,” Phys. Rev. B., 72, 085414 (2005).
[4.4] E. Dieulesaint and D. Royer, Elastic waves in solids. Springer, (1995).
[4.5] Anthony D. Puckeet, M.L. Peterson, “A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides,” Ultrasonic, 43, 197 (2005).
[4.6] Mirsky. “Axisymmeteric vibration of orthotropic cylinders,” J. Acoust. Soc. Am. 36, 2106 (1964).
[4.7] A.-C. Hladky-Hennion. “Finite element analysis of the propagation of acoustic waves in waveguides,” J. Sound. Vib. 194(2), 119 (1996).
[4.8] Marzani, E. Viola, I. Bartoli, F.L. di Scalea, P. Rizzo. “A semi-analytical finite element formulation for modeling stress wave propagation in axisymmeteric damped waveguided.” J. Sound. Vib. 318, 488 (2006).
[4.9] Migliori, J.L. Sarrao, William M. Visscher, T.M. Bell, Ming Lei, Z. Fisk and R.G. Leisure. “Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli od solids.” Physica B. 183, 1 (1993)
[4.10] William M. Visscher, A. Migliori, T. M. Bell, and R.A. Reinert. “On the normal modes of free vibration oh inhomogeneous and anisotropic elastic objects.” J. Acous. Soc. Am., 90(4), 2154 (1991).
[4.11] N. Nishiguchi, Y. Ando and M. N. Wybourne. “Acoustic phonon modes of retangular quantum wires.” J. Phys.: Condens. Matter. 9, 5751-5764 (1997).
[4.12] R.G. Leisure and F.A. Willis. “Resonant ultrasound spectroscopy.” J. Phys.: Condens. Matter, 9, 6001-6029 (1997).
[4.13] M. Hu, X. Wang, G. Hartland, P. Mulvaney, J. Juste, and J. Saders, “Vibrational response of nanorods to ultrafast laser induced heating: Theoretical and experimental analysis.” J. Am. Chem. Soc, 125, 14925 (2003).
[5.1] G.V. Hartland, 'Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,' The Journal of Chemical
Physics, 116, 8048, (2002).
[5.2] A. Devos, M. Foret, S. Ayrinhac, P. Emery, and B. Rufflé, “Hypersound damping in vitreous silica measured by picosecond acoustics,” Phys. Rev. B. 77, 100201 (2008)
[5.3] H. N Lin, H. J. Maris and L.B. Freund, K. Y. Lee, H. Luhn and D. P. Kern, “Study of vibration modes of gold nanostructures b picosecond ultrasonics,” J. Appl. Phys. 73, 37 (1993).
[5.4] Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys. 103, 014308 (2008).
[5.5] P. Hanarp, M. Käll, and D. S. Sutherland, “Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography.” J. Phys. Chem. B. 107, 5768–5772 (2003).
[5.6] C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz. “Nanoparticle Optics:  The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays.” J. Phys. Chem. B. 107, 7337–7342 (2003).
[5.7] A. D. Puckeet, M.L. Peterson, “A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides,” Ultrasonic 43, 197 (2005).
[5.8] W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, “ Attenuation and velocity of 56GHz longitudinal phonons in gallium arsenide from 50K to 300K.” Philosophical Magazine Part B, 70, 687-693 (1994).
[5.9] L. Kari. “Axially symmetric modes in finite cylinders—the wave guide solution.” Wave motion 37, 191-206, (2003).
[5.10] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed,. Cambridge University Press, Cambridge, 1927.
[5.11] J. Adem, “On the axially symmetric steady wave propagation in elastic circular rods.” Quat. Appl. Math. 12, 261-275 (1954).
[5.12] M.C. Cross and Ron Lifshitz, “Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems,” Phys. Rev. B., 64, 085324 (2001).
[5.13] R. Prasher, T. Tong, A. Majumdar, “An acoustic and dimensional mismatch model for thermal boundary conductance between a vertical mesoscopic nanowire/nanotube and a bulk substrate.” J. Appl. Phys. 102, 104312 (2007)
[5.14] D. T. F. Marple, “Refractive index of GaAs,' J. Appl. Phys. 35, 1241-1242 (1964).
[5.15] D. E. Aspnes, 'Optical properties of thin films,' Thin Solid Films, 89, 249, (1982).
[5.16] G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials.” Appl. Optics, 20, 26 (1981).
[5.17] H. Y. Chen, H. W. Lin, C. Y. Wu, W. C. Chen, J. S. Chen, and S. Gwo, 'Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,' Opt. Express, 16, 8106, (2008).
[5.18] T.C. Zhu, H.J. Maris, and J. Tauc, “Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440GHz,” Phys. Rev. B., 44, 4281 (1991).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6906-
dc.description.abstract利用超快光學方式來產生並偵測具奈米尺度波長與次兆赫(sub-terahertz)頻率音波的技術(picosecond ultrasonics) 已廣泛地被用來評估與研究奈米尺度下的物理現象。先前研究中,因忽略邊界效應,激發之音波主要被視為於晶體塊材內傳播的縱波與橫波模態。而另一方面,奈米結構之共振特性(confined acoustic modes)雖亦被大量地探討與研究,然而音波因受奈米結構邊界之侷限而產生離散波導模態(guided modes)與特定色散關係的傳播特性卻鮮少被討論。故在此研究內,我們欲利用激發探測法(pump-probe technique),以具奈米厚度之金膜吸收激發光(pump beam)而熱膨脹,進而產生奈米等級波長之音波在砷化鎵奈米柱內以波導模態傳播,再以探測光(probe beam)偵測其反應。在理論計算上,我們用發展於共振超音波頻譜分析(resonant ultrasound spectroscopy)之計算方法處理砷化鎵奈米柱的非等向性,在假設柱體為無限長,邊界沒有受應力的條件下,可得被侷限在奈米柱內傳播之波導模態的色散關係與特徵場型。而在實驗上,我們對一系列不同尺寸的奈米柱分別在不同的探測光(probe beam)波長下做量測,由實驗結果我們歸納:(1) 在探測光波長為880奈米,所觀測到的震盪訊號主要來自於柱體的徑向呼吸震動模態 (radial breathing mode),然而(2)在波長為1120奈米的探測光的條件下,柱體直徑小於300奈米以下的樣品,所觀測到的震盪訊號主要來自於表面奈米金盤的振動。在此情況下,此訊號同時伴隨著回音的產生。我們推測此震盪訊號的轉變和奈米金盤的侷域表面電漿子共振(localized surface plasmon resonance)有關。藉由其效應,奈米金盤可視為一感測器去偵測由底部反射回來的回音。此回音代表由金盤振動所耦合的波導模態在柱體內的傳播以及在柱底不連續介面的反射行為。由實驗結果分析,音波在奈米柱內的確呈現出不同於塊材內的傳播行為。且其回音時間符合波導理論預期。同時實驗中也顯示,不同模態因介面不連續所造成的反射率不同,其中我們推估主要激發之低頻模態其反射率為0.5+-0.2。zh_TW
dc.description.abstractPicosecond ultrasonics for its mechanisms of generation, detection and applications has been widely studied. Most of previous studies treated the excited acoustic waves as longitudinal and transverse modes due to the neglect of boundary confinement. On the other hand, using femtosecond lasers to excite the confined acoustic modes of nanostructures were also been discussed greatly, but the acoustic guided modes confined to the nanostructures were rarely discussed. In this thesis, we used ultrafast optical pump-probe technique to generate and detect nano-acoustic waves (NAWs) confined to a GaAs nanorod. In our designed structure, a gold nanodisk that deposited on the top of the nanorod was designed to acts as an opto-acoustic transducer. NAWs are launched for the thermal-induced vibration of the disk, and then the waves evolve to guided modes that propagate inside the nanorod. In theory, continuum linear elastic model – resonant ultrasound spectroscopy (RUS) is adopted for the anisotropic elastic properties of GaAs. Under the assumptions of infinite rod length and stress free boundary conditions, the dispersion relation of guided modes is obtained. From experiment, we concluded the detection sensitivity of acoustic responses of the designed samples depend on the probe wavelength: (1) for near-infrared probe (880nm), the dominating oscillatory signal observed is induced from the radial breathing mode of GaAs nanorods. However, (2) for infrared probe (1120nm) condition, the dominant signal converts into the vibration of nanodisk. Under this scheme, echoes with relatively slow velocity are observed as well. We suggested the intervention of localized surface plasmon resonance (LSPR) should be the key to the change of the signal. With the aid of LSPR, the Au nanodisk is not only a transducer but also a highly sensitive acoustic detector to detect the returning echo. The roundtrip time of observed echo shows a good agreement with the simulation of the anisotropic waveguide theory. The results reflect the fact that propagation of NAWs confined to nanostructures are different to that in bulk crystal. Additionally, in this thesis we further demonstrated the reflection coefficient of the fundamental mode at the rod-substrate interface is roughly 0.5+-0.2 , while the other modes of higher frequency suffer lower reflection for the issue of mode matching between the nanorod and the substrate.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:20:51Z (GMT). No. of bitstreams: 1
ntu-101-R98941036-1.pdf: 2226836 bytes, checksum: e78985e24711df3dcb4322d9d20e8e31 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGUREs xi
LIST OF TABLEs xvi
Chapter 1 Introduction 1
1.1 Picosecond Ultrasonic (Nano-Acoustic Waves) 1
1.2 Femtosecond Pump-Probe Technique 2
1.3 Motivation 3
1.4 Thesis Structure 5
Reference 7
Chapter 2 Designed Sample and Experimental Setup 10
2.1 Designed Structure of Samples 10
2.2 Experiment Setup 15
2.2.1 Experiment Setup (probe: 880nm, pump: 440nm) 15
2.2.2 Experiment Setup (probe: 1120nm, pump: 390nm) 17
Reference 19
Chapter 3 Acoustic Dynamics of Laser-Heated Periodic Nanorod Structures 20
3.1 Radial Breathing Mode of Nanorods 20
3.2 Surface Acoustic Waves in Surface-Patterned Structures 22
3.3 Backward Brillouin Oscillation 23
3.4 Vibration of Metallic Nano-objects 24
Reference 27
Chapter 4 Nano-Acoustic Guided Waves in Cylindrical Nanorods 29
4.1 Continuum Elastic Theory ......... 29
4.2 Acoustic Waves in Bulk Crystals 31
4.3 Acoustic Waves in Finite Solid – Waveguide Theory 32
4.4 Acoustic Guided Waves in an Isotropic Cylindrical Rod 32
4.5 Acoustic Guided Waves in an Anisotropic Cylinder Waveguide 35
4.5.1 Variation Method 36
4.5.2 Basis Function 37
4.5.3 Classification of Normal Modes 39
4.5.4 Comparison with Pochhammer Chree Theory 40
4.5.5 Dispersion Curve and Mode Distribution of Guided Waves in GaAs NRs 45
Reference 47
Chapter 5 Experimental Results and Discussion 49
5.1 Experiment Results (probe 880nm, pump 440nm) 49
5.2 Experimental Result (probe 1120nm, pump 390nm) 53
5.2.1 Frequency Domain Analysis 56
5.2.2 Detection Mechanism for the Infrared Probe (1120nm) 61
5.2.3 Time Domain Analysis 62
5.2.4 Group Velocity of Acoustic Wave Packet 64
5.2.5 Roundtrip Loss Inside the GaAs Nanorod 69
5.2.6 Backward Brillouin Oscillation 75
Reference 80
Chapter 6 Summary and Future Work 83
dc.language.isoen
dc.title奈米音波於砷化鎵奈米柱之波導模態zh_TW
dc.titleNano-Acoustic Guided Waves in GaAs Nanorodsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳政忠,張玉明,施閔雄
dc.subject.keyword奈米超音波,超快光學,奈米柱,音波波導模態,共振超音波頻譜分析,色散關係,徑向呼吸模態,侷域表面電漿子共振,zh_TW
dc.subject.keywordNano-acoustic waves (NAWs),ltrafast optic technique,nanorod,guidedmodes,radial breathing mode,resonant ultrasound spectroscopy (RUS),dispersion relation,localized surface plasmon resonance (LSPR),en
dc.relation.page85
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-02-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved