請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69049
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林翰佑(Han-You Lin) | |
dc.contributor.author | Ting-Yu Chuang | en |
dc.contributor.author | 莊婷淯 | zh_TW |
dc.date.accessioned | 2021-06-17T02:49:06Z | - |
dc.date.available | 2024-08-17 | |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-18 | |
dc.identifier.citation | 陳信宏(2011)。點帶石斑魚介白素-6之基因選殖、蛋白表現及功能分析。國立成功大學生物科技研究所碩博士班碩士論文,台南市。[Hsin-Hung Chen (2011). Interleukin-6 gene cloning, protein expression and functional analysis of orange-spotted grouper (Epinephelus coioides). National Cheng Kung University.] 方苡帆(2013)。應用重組介白素-6於點帶石斑魚之抗病機轉研究。國立成功大學生物科技研究所碩博士班碩士論文,台南市。[Yi-Fan Fang (2013). The pathogen resistance mechanism of recombinant interleukin-6 treated grouper (Epinephelus coioides). National Cheng Kung University.] 蘇建宏(2015)。在不同免疫刺激下點帶石斑其IL-6, IL-6R和gp130的訊息傳遞。國立成功大學生物科技研究所碩士論文,台南市。[Chien-Hung Su (2015). Gene signaling analysis between IL-6, IL-6R and gp130 in various immune stimulated orange-spotted grouper (Epinephelus coioides). National Cheng Kung University.] 陳俊翰(2015)。不同給藥路徑給予介白素-6對點帶石斑魚免疫能力促進之評估。國立成功大學生物科技研究所碩士論文,台南市。[Chun-Han Chen (2015). Evaluated the immune stimulated responses in recombinant interleukin-6 treated groupers (Epinephelus coioides) via various administrated routes. National Cheng Kung University.] Agrawal, A., Cha-Molstad, H., Samols, D., Kushner, I. (2001). Transactivation of C-Reactive Protein by IL-6 Requires Synergistic Interaction of CCAAT/Enhancer Binding Protein β (C/EBPβ) and Rel p50. The Journal of Immunology, 166(4), 2378. doi:10.4049/jimmunol.166.4.2378 Bazan, J. F. (1990). Structural design and molecular evolution of a cytokine receptor superfamily. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 6934-6938. doi:10.1073/pnas.87.18.6934 Biller, J. D., Takahashi, L. S. (2018). Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity. Anais da Academia Brasileira de Ciências, 90, 3403-3414. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext pid=S0001-37652018000703403 nrm=iso Bird, S., Zou, J., Savan, R., Kono, T., Sakai, M., Woo, J., Secombes, C. (2005). Characterisation and expression analysis of an interleukin 6 homologue in the Japanese pufferfish, Fugu rubripes. Developmental Comparative Immunology, 29(9), 775-789. doi:https://doi.org/10.1016/j.dci.2005.01.002 Bornhorst, J. A., Falke, J. J. (2000). Purification of proteins using polyhistidine affinity tags. Methods in enzymology, 326, 245-254. doi:10.1016/s0076-6879(00)26058-8 Boulanger, M. J., Chow, D.-c., Brevnova, E. E., Garcia, K. C. (2003). Hexameric Structure and Assembly of the Interleukin-6/IL-6 α-Receptor/gp130 Complex. Science, 300(5628), 2101. doi:10.1126/science.1083901 Calabrese, L. H., Rose-John, S. (2014). IL-6 biology: implications for clinical targeting in rheumatic disease. Nature Reviews Rheumatology, 10(12), 720-727. doi:10.1038/nrrheum.2014.127 Chen, H.-H., Lin, H.-T., Foung, Y.-F., Han-You Lin, J. (2012). The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Developmental Comparative Immunology, 38(2), 285-294. doi:https://doi.org/10.1016/j.dci.2012.06.013 Costa, G., Danz, H., Kataria, P., Bromage, E. (2012). A holistic view of the dynamisms of teleost IgM: A case study of Streptococcus iniae vaccinated rainbow trout (Oncorhynchus mykiss). Developmental and Comparative Immunology, 36(2), 298-305. doi:10.1016/j.dci.2011.04.011 Fischer, M., Goldschmitt, J., Peschel, C., Brakenhoff, J. P. G., Kallen, K.-J., Wollmer, A., . . . Rose-John, S. (1997). A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nature Biotechnology, 15(2), 142-145. doi:10.1038/nbt0297-142 Gelinas, A. D., Davies, D. R., Edwards, T. E., Rohloff, J. C., Carter, J. D., Zhang, C., . . . Janjic, N. (2014). Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand. The Journal of biological chemistry, 289(12), 8720-8734. doi:10.1074/jbc.M113.532697 Heinrich, P. C., Castell, J. V., Andus, T. (1990). Interleukin-6 and the acute phase response. The Biochemical journal, 265(3), 621-636. doi:10.1042/bj2650621 Kaneda, M., Odaka, T., Suetake, H., Tahara, D., Miyadai, T. (2012). Teleost IL-6 promotes antibody production through STAT3 signaling via IL-6R and gp130. Developmental Comparative Immunology, 38(2), 224-231. doi:https://doi.org/10.1016/j.dci.2012.02.002 Laing, K. J., Hansen, J. D. (2011). Fish T cells: Recent advances through genomics. Developmental Comparative Immunology, 35(12), 1282-1295. doi:https://doi.org/10.1016/j.dci.2011.03.004 Mihara, M., Hashizume, M., Yoshida, H., Suzuki, M., Shiina, M. (2011). IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science, 122(4), 143-159. doi:10.1042/cs20110340 Muñoz-Carrillo, J. L., Contreras-Cordero, J., Gutiérrez-Coronado, O., Villalobos-Gutiérrez, P., Ramos-Gracia, L., Hernández-Reyes, V. (2018). Cytokine Profiling Plays a Crucial Role in Activating Immune System to Clear Infectious Pathogens. In. Nausch, H., Huckauf, J., Koslowski, R., Meyer, U., Broer, I., Mikschofsky, H. (2013). Recombinant production of human interleukin 6 in Escherichia coli. PloS one, 8(1), e54933-e54933. doi:10.1371/journal.pone.0054933 Peters, M., Blinn, G., Solem, F., Fischer, M., zum Büschenfelde, K.-H. M., Rose-John, S. (1998). In Vivo and In Vitro Activities of the gp130-Stimulating Designer Cytokine Hyper-IL-6. The Journal of Immunology, 161(7), 3575. Retrieved from http://www.jimmunol.org/content/161/7/3575.abstract Rose-John, S. (2012). IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory Activities of IL-6. International Journal of Biological Sciences, 8(9), 1237-1247. doi:10.7150/ijbs.4989 Saito, M., Yoshida, K., Hibi, M., Taga, T., Kishimoto, T. (1992). Molecular cloning of a murine IL-6 receptor-associated signal transducer, gp130, and its regulated expression in vivo. The Journal of Immunology, 148(12), 4066. Retrieved from http://www.jimmunol.org/content/148/12/4066.abstract Scheller, J., Chalaris, A., Schmidt-Arras, D., Rose-John, S. (2011). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1813(5), 878-888. doi:https://doi.org/10.1016/j.bbamcr.2011.01.034 Schmidt, S., Schumacher, N., Schwarz, J., Tangermann, S., Kenner, L., Schlederer, M., . . . Rose-John, S. (2018). ADAM17 is required for EGF-R–induced intestinal tumors via IL-6 trans-signaling. Journal of Experimental Medicine, 215(4), 1205-1225. doi:10.1084/jem.20171696 Silva-Barrios, S., Stäger, S. (2017). Protozoan Parasites and Type I IFNs. Frontiers in immunology, 8, 14-14. doi:10.3389/fimmu.2017.00014 Sunyer, J. O. (2012). Evolutionary and functional relationships of B cells from fish and mammals: insights into their novel roles in phagocytosis and presentation of particulate antigen. Infectious disorders drug targets, 12(3), 200-212. doi:10.2174/187152612800564419 Tanaka, T., Narazaki, M., Kishimoto, T. (2012). Therapeutic Targeting of the Interleukin-6 Receptor. Annual Review of Pharmacology and Toxicology, 52(1), 199-219. doi:10.1146/annurev-pharmtox-010611-134715 Tanaka, T., Narazaki, M., Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology, 6(10), a016295-a016295. doi:10.1101/cshperspect.a016295 Tsutsui, S., Nakamura, O., Watanabe, T. (2007). Lamprey (Lethenteron japonicum) IL-17 upregulated by LPS-stimulation in the skin cells. Immunogenetics, 59(11), 873-882. doi:10.1007/s00251-007-0254-2 Yawata, H., Yasukawa, K., Natsuka, S., Murakami, M., Yamasaki, K., Hibi, M., . . . Kishimoto, T. (1993). Structure-function analysis of human IL-6 receptor: dissociation of amino acid residues required for IL-6-binding and for IL-6 signal transduction through gp130. The EMBO journal, 12(4), 1705-1712. Retrieved from https://pubmed.ncbi.nlm.nih.gov/8467812 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413384/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69049 | - |
dc.description.abstract | Interleukin-6 (IL-6) 為一種多效性細胞激素,其在調節免疫反應上佔有非常重要的位置。在先天性及後天性免疫反應中,IL-6 可以誘發急性期蛋白、抗菌胜肽、補體等免疫因子分泌,且促使淋巴球的增生及分化並促進抗體的產生。其作用的機制為在目標細胞上,IL-6 會與其受體 interleukin-6 receptor (IL-6R) 及 glycoprotein 130 (gp130) 進行結合,其刺激訊息會藉由 gp130 傳遞至細胞內,並引起細胞下游免疫反應產生。IL-6 與受體結合在不同的細胞的結合方式有兩種,分別為 classic signaling 及trans-signaling,其不同處在於與不同型態的IL-6R 結合。IL-6 與 membrane-form IL-6R (mIL-6R) 結合後再與gp130聯合稱為classic signaling,而與soluble-form IL-6R (sIL-6R) 結合後再與gp130聯合為trans-signaling。當IL-6 進行trans-signaling時有機會提高 IL-6 產生免疫反應的機率。在過去的研究將sIL-6R 與 IL-6 以一段直鏈蛋白連接,形成一種名為Hyper-IL-6 的融合蛋白。其研究結果顯示,若使用Hyper-IL-6 刺激,在達到同樣的免疫刺激量時,Hyper-IL-6所使用的劑量比IL-6低100-1000倍。因此, Hyper-IL-6 可能是一個在免疫上極具潛力的融合蛋白。本篇研究將從點帶石斑魚體組織內獲取點帶石斑mIL-6R 的基因,藉由生物資訊學的方式預測其信號蛋白(signal peptide),免疫球蛋白結構域 (immunoglobin domain, Ig domain),細胞激素結合位 (cytokine-binding domains, CBD, 以IL-6R 來說即為IL-6 binding site),纖連蛋白III型結構域 (fibronectin type III domain, FN 3 domain),跨膜結構域 (transmembrane domain), WSXWS motif, cysteine residues 等蛋白結構域,並與其他已知IL-6R 的魚種以及哺乳類的IL-6R 進行比對,以確認獲取之基因為IL-6R。根據以生物資訊預測到的跨膜區,從mIL-6R 中取得sIL-6R 的基因後進行密碼子優化 (codon usage),再將優化後的sIL-6R 與 IL-6 以基因工程的方式結合,形成點帶石斑之Hyper-IL-6。本研究將 sIL-6R及Hyper-IL-6 進行蛋白表現後,其蛋白純化,功能性分析及與gp130結合性測試將於未來工作中逐一完成,預計融合蛋白Hyper-IL-6 可以提升魚體之免疫效益,可以做為未來免疫促進劑或是疫苗佐劑開發的參考。 | zh_TW |
dc.description.abstract | Interleukin-6 (IL-6) is a pleiotropic cytokine, which has various effects on innate and acquired immune responses including induce the expression of acute phase proteins (APPs), antimicrobial peptides and complements, promoting antimicrobial activities. When it binds with the specific cognate receptor interleukin-6 receptor (IL-6R) and glycoprotein 130 (gp130), it can activate downstream signaling pathway; there are two different binding type between IL-6, IL-6R and gp130 ‘class-signaling pathway’ was lunched by IL-6 binding the receptor IL-6R and gp130 on the cell membrane of target cell; ‘trans-signaling pathway’ require a soluble IL-6R (sIL-6R) instead of mIL-6R on the target cell surface. In order to increase the effect of IL-6 induced trans-signaling pathway, in previous research, designed a recombinant fusion protein by linking an IL-6, a soluble IL-6R and a flexible peptide linker, and named Hyper-IL-6. It has 100 to 1,000-fold more activity than free form IL-6 and IL-6R. Since Hyper-IL-6’s high immune inducible efficiency, it might be a good candidate protein for immunostimulants or adjuvants of vaccine in teleost. In this study, the Epinephelus coioides (grouper) IL-6R was cloned and IL-6R homologues were identified. Then, the protein and specific domain were defined, including immunoglobulin domain (Ig domain), cytokine-binding domains (CBD, IL-6 binding site), fibronectin type III domain (FN 3 domain), WSXWS motif, cysteine residues. Based on the research in 1997, The combination of the extracellular domain of grouper IL-6R and IL-6 together with a peptide linker was constructed. The functional analyzed and binding assay of Hyper-IL-6 will be confirmed in the future work, and hope that can increasing the immunology effectively enhance in aquaculture. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:49:06Z (GMT). No. of bitstreams: 1 U0001-1608202023492700.pdf: 6184317 bytes, checksum: 62fbd7e281c13362f9fe9eef422f9c68 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iv Chapter 1- Introduction 1 1.1 Orange-spotted groupers (Epinephelus coioides) 1 1.2 The innate immune of fish 1 1.3 Interleukin-6 (IL-6) 3 1.4 The study of IL-6 and the interaction with receptors in fish 5 1.5 Hyper-IL-6 7 Chapter 2- Materials and methods 9 2.1 Construction, expression, and identification of rIL-6, rIL-6R and rHyper-IL-6 of Epinephelus coioides 9 Chapter 3 Result 27 3.1 The cloning of IL-6R gene sequence of grouper 27 3.2 Phylogenetic analysis of grouper IL-6R 27 3.3 Characterization of grouper IL-6R amino acid sequence and analysis of structure prediction 28 3.4 The cloning of Hyper-IL-6 gene sequence of grouper 30 Chapter 4 Discussion and Conclusion 32 4.1 Identification, sequence analysis and phylogenetic of the grouper IL-6R 33 4.2 Hyper-IL-6 34 4.3 The experimental problems in this study 35 References 37 Figures 42 Tables 62 | |
dc.language.iso | en | |
dc.title | 點帶石斑之Interleukin-6 receptor (IL-6R) 的基因選殖分析及其與Interleukin-6 (IL-6) 融合蛋白的建構與蛋白表現 | zh_TW |
dc.title | The Construction of Orange-spotted grouper (Epinephelus coioides) Interleukin-6 and Interleukin-6 Receptor Fusion Protein (Hyper-IL-6), Recombinant Protein Expression, and Functional Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林辰栖(Chen-Si Lin),邱品文(Pin-Wen Chiou) | |
dc.subject.keyword | 點帶石斑,介白素-6,介白素-6 受體,Hyper-IL-6,免疫系統, | zh_TW |
dc.subject.keyword | Epinephelus coioides,interleukin-6,interleukin-6 receptor,Hyper-IL-6,immune system, | en |
dc.relation.page | 63 | |
dc.identifier.doi | 10.6342/NTU202003639 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1608202023492700.pdf 目前未授權公開取用 | 6.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。