請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李貫銘(Kuan-Ming Li) | |
| dc.contributor.author | Chun-Kai Hsu | en |
| dc.contributor.author | 許鈞凱 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:48:07Z | - |
| dc.date.available | 2022-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | [1] http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/list/list.aspx?id=466(取自2017.7.7)
[2] http://www.boronextrication.com/2009/12/03/more-uhss-and-ahss-in-the-future/(取自2017.7.7) [3] http://www.worldautosteel.org/(取自2017.7.7) [4] 洪英治, “先進高強度鋼板沖壓成形包辛格效應之研究,” 國立台灣大學機械工程學研究所碩士論文, 2011. [5] https://www.c2es.org/docUploads/Fuel%20Economy%20paper.Chinese%20final.pdf(取自2017.7.7) [6] 顏暄明, '雙軸拉伸試驗夾治具機構與試片形狀之優化設計,' 國立台灣大學機械工程研究所碩士論文, 2015. [7] Xue, Juan Liao, Gabriela Vuncze,Frederic Barlet, “Twist springback characteristics of dual-phase steel sheet after non-axisymmetric deep drawing,” International Journal of Material Forming, 2015. [8] 張志毅,林義凱,何明雄,沈炳臣,“應用PAM-STAMP於鋁合金成形之回彈分析”,南亞技術學院機械工程學系學位論文, 2011. [9] W. Thomas, T. Oenoki, and T. Altan, “Process simulation in stamping–recent applications for product and process design,” Journal of materials processing technology, vol. 98, pp. 232-243, 2000. [10] M. Banua, M. Takamura, T. Hama, O. Naidim, C. Teodosiu and A. Makinouchi, “Simulation of springback and wrinkling in stamping of a dual phase steel rail-shaped part”, Journal of Materials Processing Technology, vol. 173, pp. 178-184, 2006. [11] R. H. Wagoner, and M. Li, “Simulation of springback: through-thickness integration, ” International Journal of Plasticity, vol. 23, pp. 345-360, 2007. [12] J.-H. Song, H. Huh, and S.-H. Kim,“Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology,” Journal of engineering materials and technology, vol. 129, pp. 397-406, 2007. [13] S. Panthi, N. Ramakrishnan, K. Pathak, and J. Chouhan, “An analysis of springback in sheet metal bending using finite element method (FEM),” Journal of Materials Processing Technology, vol. 186, pp. 120-124, 2007. [14] L. Noels, L. Stainier, and J.-P. Ponthot, “Combined implicit/explicit algorithms for crashworthiness analysis,” International Journal of Impact Engineering, vol. 30, pp. 1161-1177, 2004. [15] R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,“ Proceedings of the Royal Society of London, Vol. 193, pp. 281-297, 1948. [16] Y. Suh, F. Saunders, and R. Wagoner, “Anisotropic yield functions with plastic-strain-induced anisotropy,” International journal of plasticity, vol. 12, pp. 417-438, 1996. [17] L. Wang, and T. Lee, “The effect of yield criteria on the forming limit curve prediction and the deep drawing process simulation,” International Journal of Machine Tools and Manufacture, vol. 46, pp. 988-995, 2006. [18] D. C. Ahn, J. W. Yoon and, K. Y. Kim, “Modeling of anisotropic plastic behavior of ferritic stainless steel sheet,” International Journal of Mechanical Sciences, vol. 51, pp. 718-725, 2009. [19] C. Gomes, O. Onipede1, and M. Lovell, “Investigation of springback in high strength anisotropic steels”, Journal of Materials Processing Technology, vol. 159, pp. 91-98, 2005. [20] L. Geng, Y. Shen, and R. Wagoner, “Anisotropic hardening equations derived from reverse-bend testing,' International Journal of Plasticity, vol. 18, pp. 743-767, 2002. [21] J. Choi, J. Lee, G. Bae, F. Barlet, and M. G. Lee, “Evaluation of Springback for DP980 S Rail Using Anisotropic Hardening Models,” The Minerals, Metals & Materials Society of Korea, 2016. [22] A. Forcellese, L. Fratíni, F. Gabríelli and, F. Mícari, “Computer aided engineering of the sheet bending process,” Journal of Materials Processing Technology, vol. 60, pp. 225-232, 1996. [23] C. Gomes, and O. Onipede, “Springback in high strength anisotropic steel,” Proceedings of the Sixth International LS-DYNA Users Conference, 2000. [24] M. Samuel, “Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals,” Journal of Materials Processing Technology, vol. 105, pp. 382-393, 2000. [25] 蘇昱竹, “先進高強度鋼板沖壓成形回彈現象之研究”, 國立台灣大學機械工程研究所碩士論文, 2007. [26] K. Stuart, and K. Menachem, “Advanced High-Strength steels Application Guidelines Version 5.0.” [27] 王孟捷, “壓料力改善先進高強度鋼側壁捲曲之研究”, 國立台灣大學機械工程研究所碩士論文, 2016. [28] 葉昱廷, “可調式阻料條改善側壁捲曲之研究”, 國立台灣大學機械工程研究所碩士論文, 2016. [29] X. Xue, J. Liao, G. Vuncze, and F. Barlet, “Twist springback characteristics of dual-phase steel sheet after non-axisymmetric deep drawing”, International Journal of Material Forming, 2015. [30] X. Xue , J. Liao , G. Vuncze , J. Sousa , F. Barlet , J. Gracio , “Modeling and sensitivity analysis of twist springback in deep drawing of dual-phase steel,” International Journal of Materials and Design,” vol. 90 , pp. 204-217, 2016 [31] 魏華佐, “先進高強度鋼板沖壓成形扭曲現象之研究,” 國立台灣大學機械工程研究所碩士論文, 2010. [32] M. Lee, D. Kim, C. Kim, M. L. Wenner and, K. Chung, “Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications,” International Journal of Plasticity, vol. 21, pp. 915-953, 2005. [33] K. Yi, K. K. Choi, N. H. Kim and, M. E. Botkin, “Design sensitivity analysis and optimization for minimizing springback of sheet-formed part,” International Journal for Numerical Methods in Engineering, vol. 71, pp. 1483-1511, 2007. [34] J. W. Yoon, D. Y. Yang and K. Chung, “Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials,” Computer Methods in Applied Mechanics and Engineering, vol. 174, pp. 23-56, 1999. [35] D. G. Jung, S. H. Kim, M. S. Kim, T. G. Lee, H. K. Kim, “Investigation of Shape Accuracy in the Forming of a Thin-walled S-rail with Classification of Springback Modes,” Transactions of Materials Processing, Vol.22, No.8, 2013 [36] M. Takamura, A. Fukui, H. Yano, T. Hama, H. Sunaga, A. Makinouchi, anf M. Asakawa, “Investigation on Twisting and Side Wall Opening Occurring in Curved Hat Channel Products Made of High Strength Steel Sheets,” The 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, AIP Conf. Proc. 1383,pp. 887-894, 2011. [37] T. Geka, M. Asakura, T. Kiso, T. Sugiyama, M. Takamura, and M. Asakawa, “Reduction of Springback in Hat Channel with High-strength Steel Sheet by Stroke Returning Deep Drawing,” Key Engineering Materials, vols. 554-557, pp 1320-1330, 2013. [38] http://www.linsgroup.com/MECHANICAL_DESIGN/Strength_Material/Chap3.pdf(取自2017.7.7) [39] http://fr.wikipedia.org/wiki/Effet_Bauschinger. (取自2017.7.7) [40] 蔡恒光, “先進高強度鋼板反覆拉壓與雙軸拉伸變形特性之研究,” 國立台灣大學機械工程研究所博士論文, 2012. [41] http://muhendishane.org/kutuphane/malzemelerin-mekanik-davranisi/cok-eksenli-akma-kriterlerinin-grafiksel-gosterimleri/.(取自2017.7.7) [42] R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vols. 1948, pp. 281-297. [43] F. Barlat, J. Brem, J. Yoon, K. Chung, R. Dick, and D. Lege, “Plane stress yield function for aluminum alloy sheets—part 1: theory,” International Journal of Plasticity, Vol. 19, pp. 1297-1319, 2003. [44] J.-W. Yoon, F. Barlat, R. E. Dick, K. Chung, and T. J. Kang, “Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation,” International Journal of Plasticity, vol. 20, pp. 495-522, 2004. [45] W. Prager, “The theory of plasticity: a survey of recent achievements,” Proceedings of the Institution of Mechanical Engineers, vol. 169, pp. 41-57, 1995. [46] F. Yoshida and T. Uemori, “A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation,” International Journal of Plasticity, vol. 18, pp. 661-686, 2002. [47] 李政鴻, “金屬板材S帽型彎曲成型製程之分析,” 聖約翰科技大學自動化及機電整合研究所碩士論文, 2011. [48] J. K Lee, G. Kinzel, and R. H Wagoner, NUMISHEET 1996, 3rd International Conference, Numerical Simulation of 3-D Sheet Metal Forming Processes, p.444-p.453 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69031 | - |
| dc.description.abstract | 近年來隨著溫室效應的日趨嚴重以及民眾環保意識的覺醒,國際間各車廠紛紛投入車體輕量化之研究以達成降低二氧化碳排放量的目標,因此汽車結構件使用具備輕量化及高強度化之先進高強度鋼板已成為共同之趨勢。然而,隨著鋼板強度的提升,先進高強度鋼板在成形上會更加困難,且側壁外開、側壁捲曲及扭曲等成形缺陷亦會更加嚴重。本研究將針對回彈情況較複雜之扭曲缺陷進行探討與改善。
本研究首先根據扭曲相關文獻進行歸納整理,得出具轉折角度之結構件為最容易產生扭曲缺陷之不對稱特徵造型。接著藉由分析Curved hat channel模具與S-rail兩種基礎載具模型來探討先進高強度鋼板之扭曲現象。本研究參考Curved hat channel模具之基礎造型,提出一扭曲量與其造型參數之理論關係式,且建立各造型參數與扭曲量之關係,可提供開發者日後在設計仿Curved hat channel之實際載具(如A柱)時初步挑選合適的搭配參數方向。本研究亦建立S-rail模具沖壓先進高強度鋼板之CAE分析模型,實際分析各造型參數與扭曲量之關係,可提供開發者日後在設計仿S-rail之實際載具時初步挑選合適的搭配參數方向。最後優化設計了一套可提升實驗效率之驗證模具,未來可實際執行沖壓試驗驗證先前建立之先進高強度鋼板材料模型對於扭曲回彈預測之準確性,並將此材料模型持續應用於後續之模擬研究。 | zh_TW |
| dc.description.abstract | As greenhouse effect becomes worse and environmental consciousness rises in recent years, there are more and more vehicle manufacturers around the world starting to study lightweight design of automobiles in order to reduce CO2 emissions. It results in widely use of advanced high strength steels (AHSS) in automobile structural parts because of its lightweight and high strength. However, the higher strength the sheet metal, the harder to stamp. In addition, the stamping defects such as sidewall curl and distortion become worse. This research aims to investigates the more distortion defects in deep drawing of AHSS.
It is known that structural parts with turning geometry are easier to generate distortion defects because of its unsymmetry. This thesis investigates distortion phonemenon of AHSS DP980 steels by two fundamental model, Curved hat channel and S-rail die. First, this thesis studies propose the relation among geometric parameters and twist angle. The results can provide a direction for designers to design structural parts like A-pillar. The research also builts CAE model of Curved Hat Channel and S-rail model, and establishes relations between all parameters and twist angle. Finally, a S-rail die is made for CAE model validation. The experiments will carry out in the future. And the material model of DP980 can also apply for other CAE process ine the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:48:07Z (GMT). No. of bitstreams: 1 ntu-106-R04522719-1.pdf: 3235156 bytes, checksum: 05c61f18965b132362aeb2d62626e4ff (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 II
摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 1.3 文獻回顧 7 1.4 研究方法與步驟 12 1.5 論文總覽 14 第二章 先進高強度鋼板扭曲回彈特性之探討 16 2.1 分析模型介紹 16 2.1.1 CAE分析模型建立 17 2.1.2 Curved hat channel扭曲回彈之定義及量測 18 2.2 模型收斂性分析 20 2.2.1 板材網格大小 20 2.2.2 厚度方向積分點數目 21 2.2.3 最大自適應網格細化度 22 2.2.4 沖壓速度 24 2.2.5 收斂性分析結果 25 2.3 包辛格效應對Curved hat channel扭曲回彈之影響 26 2.4 Curved hat channel扭曲回彈之理論分析 29 2.5 Curved hat channel參數之探討 34 2.5.1 探討參數歸納 34 2.5.2 材料強度 37 2.5.3 板材厚度 38 2.5.4 壓料力 39 2.5.5 沖頭圓角 40 2.5.6 母模圓角 42 2.5.7 底部寬度(W) 43 2.5.8 轉折半徑(R) 44 2.5.9 轉折角度(Ө) 47 2.5.10 沖深(h) 48 2.5.11 結果討論 49 第三章 基礎扭曲載具(S-rail)之CAE分析模型建立 51 3.1 CAE分析模型之介紹 51 3.1.1 分析模型建立 52 3.1.2 扭曲量定義 53 3.2 模型收斂性分析 55 3.2.1 板材網格大小 55 3.2.2 模具網格大小 56 3.2.3 厚度方向積分點數目 56 3.2.4 最大自適應網格細化度 57 3.2.5 沖壓速度 58 3.2.6 收斂性測試結果 59 3.3 S-rail參數之探討 60 3.3.1 參數範圍歸納 60 3.3.2 材料強度 61 3.3.3 板材厚度 62 3.3.4 壓料力 63 3.3.5 沖頭圓角(Rp) 65 3.3.6 母模圓角(Rd) 66 3.3.7 S型轉折半徑(R) 67 3.3.8 S型轉折角度(Ө) 68 3.4 S-rail與Curved hat channel模型之比較 70 第四章 基礎扭曲載具(S-rail)成形之模具設計 71 4.1 現有之S-rail模具介紹 71 4.2 沖壓設備介紹 74 4.3 S-rail驗證模具之優化設計 75 4.3.1 上模座 77 4.3.2 可替換式沖頭 78 4.3.3 壓料板 79 4.3.4 母模 81 4.4 CAE模擬結果 82 4.5 本章小結 88 第五章 結論與未來展望 89 5.1 結論 89 5.2 未來展望 90 參考文獻 91 作者簡歷 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 先進高強度鋼板 | zh_TW |
| dc.subject | 扭曲回彈 | zh_TW |
| dc.subject | S-rail | zh_TW |
| dc.subject | Curved hat channel | zh_TW |
| dc.subject | 有限元素法分析 | zh_TW |
| dc.subject | Curved hat channel | en |
| dc.subject | Advanced high strength steel | en |
| dc.subject | Twist | en |
| dc.subject | Distortion | en |
| dc.subject | S-rail | en |
| dc.subject | Finite element analysis. | en |
| dc.title | 以基礎載具分析先進高強度鋼板扭曲現象之研究 | zh_TW |
| dc.title | A Study of Distortion Phenomenon in Advanced High Strength Steel Sheets by Fundamental model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宏智(Hong-Tsu Young),黃庭彬(Ting-Bin Huang) | |
| dc.subject.keyword | 先進高強度鋼板,扭曲回彈,Curved hat channel,S-rail,有限元素法分析, | zh_TW |
| dc.subject.keyword | Advanced high strength steel,Twist,Distortion,Curved hat channel,S-rail,Finite element analysis., | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU201702606 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
