請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69030完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃心豪 | |
| dc.contributor.author | Yu-Ju Chen | en |
| dc.contributor.author | 陳昱儒 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:48:04Z | - |
| dc.date.available | 2020-08-31 | |
| dc.date.copyright | 2017-08-31 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | [1] E. M. Moya-Sanz, I. Ivañez, and S. K. Garcia-Castillo, 'Effect of the geometry in the strength of single-lap adhesive joints of composite laminates under uniaxial tensile load,' International Journal of Adhesion and Adhesives, vol. 72, pp. 23-29, 2017. [2] [TPC] Taiwan Power Company, '2013 Sustainability Report,' 2013. [3] U. Galappaththi, A. De Silva, M. Macdonald, and O. Adewale, 'Review of inspection and quality control techniques for composite wind turbine blades,' Insight-Non-Destructive Testing and Condition Monitoring, vol. 54, pp. 82-85, 2012. [4] M. A. Eder and R. Bitsche, 'Fracture analysis of adhesive joints in wind turbine blades,' Wind Energy, vol. 18, pp. 1007-1022, 2015. [5] N. Stein, P. Weißgraeber, and W. Becker, 'A model for brittle failure in adhesive lap joints of arbitrary joint configuration,' Composite Structures, vol. 133, pp. 707-718, 2015. [6] M. Banea and L. F. da Silva, 'Adhesively bonded joints in composite materials: an overview,' Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, vol. 223, pp. 1-18, 2009. [7] [ASTM] American Society for Testing and Materials, 'D5868-01, Standard test method for lap shear adhesion for fiber reinforced plastic (FRP) bonding,' Annual Book of ASTM standards, vol. 15, 2001. [8] [ASTM] American Society for Testing and Materials, 'D5573-99. Standard practice for classifying failure modes in fiber-reinforced-plastic (FRP) joints,' Annual book of ASTM standards, vol. 15, 2005. [9] L. F. da Silva, A. Öchsner, and R. D. Adams, Handbook of adhesion technology: Springer Science Business Media, 2011. [10] S. Budhe, M. Banea, S. de Barros, and L. F. da Silva, 'An updated review of adhesively bonded joints in composite materials,' International Journal of Adhesion and Adhesives, vol. 72, pp. 30-42, 2017. [11] O. Volkersen, 'The rivet load distribution in lap-joints with members of constant thickness subjected to tension,' Luftfahrtforschung, vol. 15, pp. 41-47, 1938. [12] M. Goland and E. Reissner, 'The Stress in Cemented Joint,' Trans. ASME, vol. 66, p. A17, 1944. [13] L. F. da Silva, P. J. das Neves, R. Adams, and J. Spelt, 'Analytical models of adhesively bonded joints—Part I: Literature survey,' International Journal of Adhesion and Adhesives, vol. 29, pp. 319-330, 2009. [14] N. Stein, H. Mardani, and W. Becker, 'An efficient analysis model for functionally graded adhesive single lap joints,' International Journal of Adhesion and Adhesives, vol. 70, pp. 117-125, 2016. [15] H. Abdi, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, 'Enhanced elastic-foundation analysis of balanced single lap adhesive joints,' International Journal of Adhesion and Adhesives, vol. 72, pp. 80-91, 2017. [16] X. He, 'A review of finite element analysis of adhesively bonded joints,' International Journal of Adhesion and Adhesives, vol. 31, pp. 248-264, 2011. [17] R. Adams and N. Peppiatt, 'Stress analysis of adhesive-bonded lap joints,' Journal of strain analysis, vol. 9, pp. 185-196, 1974. [18] R. Adams and J. Harris, 'The influence of local geometry on the strength of adhesive joints,' International Journal of Adhesion and Adhesives, vol. 7, pp. 69-80, 1987. [19] C.-T. Hoang-Ngoc and E. Paroissien, 'Simulation of single-lap bonded and hybrid (bolted/bonded) joints with flexible adhesive,' International Journal of Adhesion and Adhesives, vol. 30, pp. 117-129, 2010. [20] H. Sönnerlind. 'Singularities in Finite Element Models: Dealing with Red Spots,' Comsol Blog, Available: https://www.comsol.com/blogs/singularities-in-finite-element-models-dealing-with-red-spots/, 2015 [Access: 2017 July 1]. [21] M. Acin. 'Stress singularities, stress concentrations and mesh convergence,' Acin.Net, Available: http://www.acin.net/2015/06/02/stress-singularities-stress-concentrations-and-mesh-convergence/, 2015 [Access: 2017 July 1]. [22] D. Gleich, M. Van Tooren, and A. Beukers, 'Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures,' Journal of adhesion science and technology, vol. 15, pp. 1091-1101, 2001. [23] W. Xu and Y. Wei, 'Strength and interface failure mechanism of adhesive joints,' International journal of adhesion and adhesives, vol. 34, pp. 80-92, 2012. [24] R. Vijaya kumar, M. Bhat, and C. Murthy, 'Analysis of composite single lap joints using numerical and experimental approach,' Journal of Adhesion Science and Technology, vol. 28, pp. 893-914, 2014. [25] H. Luo, Y. Yan, T. Zhang, and Z. Liang, 'Progressive failure and experimental study of adhesively bonded composite single-lap joints subjected to axial tensile loads,' Journal of Adhesion Science and Technology, vol. 30, pp. 894-914, 2016. [26] A. Akhavan-Safar, M. Ayatollahi, and L. F. da Silva, 'Strength prediction of adhesively bonded single lap joints with different bondline thicknesses: A critical longitudinal strain approach,' International Journal of Solids and Structures, vol. 109, pp. 189-198, 2017. [27] A. Crocombe and R. D. Adams, 'Influence of the spew fillet and other parameters on the stress distribution in the single lap joint,' The Journal of Adhesion, vol. 13, pp. 141-155, 1981. [28] L. Dorn and W. Liu, 'The stress state and failure properties of adhesive-bonded plastic/metal joints,' International Journal of Adhesion and Adhesives, vol. 13, pp. 21-31, 1993. [29] T. Lang and P. Mallick, 'Effect of spew geometry on stresses in single lap adhesive joints,' International Journal of Adhesion and adhesives, vol. 18, pp. 167-177, 1998. [30] T. Lang and P. Mallick, 'The effect of recessing on the stresses in adhesively bonded single-lap joints,' International journal of adhesion and adhesives, vol. 19, pp. 257-271, 1999. [31] G. Belingardi, L. Goglio, and A. Tarditi, 'Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints,' International Journal of Adhesion and Adhesives, vol. 22, pp. 273-282, 2002. [32] A. A. Taib, R. Boukhili, S. Achiou, S. Gordon, and H. Boukehili, 'Bonded joints with composite adherends. Part I. Effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture,' International Journal of Adhesion and Adhesives, vol. 26, pp. 226-236, 2006. [33] J. Li, Y. Yan, T. Zhang, and Z. Liang, 'Experimental study of adhesively bonded CFRP joints subjected to tensile loads,' International Journal of Adhesion and Adhesives, vol. 57, pp. 95-104, 2015. [34] M. O. Doru, A. Özel, S. Akpinar, and M. D. Aydin, 'Effect of the Spew Fillet on Adhesively Bonded Single-Lap Joint Subjected to Tensile Loading: Experimental and 3-D Non-Linear Stress Analysis,' The Journal of Adhesion, vol. 90, pp. 195-209, 2014. [35] Q. G. Zeng and C. Sun, 'Novel design of a bonded lap joint,' AIAA journal, vol. 39, pp. 1991-1996, 2001. [36] L. F. Da Silva and R. Adams, 'Techniques to reduce the peel stresses in adhesive joints with composites,' International Journal of Adhesion and Adhesives, vol. 27, pp. 227-235, 2007. [37] G. Fessel, J. Broughton, N. Fellows, J. Durodola, and A. Hutchinson, 'Evaluation of different lap-shear joint geometries for automotive applications,' International journal of adhesion and adhesives, vol. 27, pp. 574-583, 2007. [38] K. S. Kim, Y. M. Yi, G. R. Cho, and C. G. Kim, 'Failure prediction and strength improvement of uni-directional composite single lap bonded joints,' Composite structures, vol. 82, pp. 513-520, 2008. [39] D. Chen, K. Arakawa, and S. Jiang, 'Novel joints developed from partially un-moulded carbon-fibre-reinforced laminates,' Journal of composite materials, vol. 49, pp. 1777-1786, 2015. [40] R. Campilho, A. Pinto, M. D. Banea, R. Silva, and L. F. da Silva, 'Strength improvement of adhesively-bonded joints using a reverse-bent geometry,' Journal of Adhesion Science and Technology, vol. 25, pp. 2351-2368, 2011. [41] M. Ashrafi, A. Ajdari, N. Rahbar, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, 'Adhesively bonded single lap joints with non-flat interfaces,' International journal of adhesion and adhesives, vol. 32, pp. 46-52, 2012. [42] A. N. Kishore and N. S. Prasad, 'An experimental study of Flat-Joggle-Flat bonded joints in composite laminates,' International Journal of Adhesion and Adhesives, vol. 35, pp. 55-58, 2012. [43] Ş. Temiz, S. Akpinar, M. Aydın, and E. Sancaktar, 'Increasing single-lap joint strength by adherend curvature-induced residual stresses,' Journal of Adhesion Science and Technology, vol. 27, pp. 244-251, 2013. [44] B. Haghpanah, S. Chiu, and A. Vaziri, 'Adhesively bonded lap joints with extreme interface geometry,' International Journal of Adhesion and Adhesives, vol. 48, pp. 130-138, 2014. [45] 邱培菡, '具非平表面之複合材料膠合處剪切強度分析,' 臺灣大學工程科學及海洋工程學系碩士論文, pp. 1-167, 2015. [46] W. H. Seemann III, 'Plastic transfer molding techniques for the production of fiber reinforced plastic structures,' ed: Google Patents, 1990. [47] K. Han, S. Jiang, C. Zhang, and B. Wang, 'Flow modeling and simulation of SCRIMP for composites manufacturing,' Composites Part A: Applied Science and Manufacturing, vol. 31, pp. 79-86, 2000. [48] A. Standard, 'Standard test method for tensile properties of polymer matrix composite materials,' ASTM D3039/D 3039M, 1995. [49] B. Broughton and M. Gower, 'Measurement good practice guide No. 47 preparation and testing of adhesive joints,' 2001. [50] S. Abbott. 'Lap Joint Models: Kendall Goland-Reissner,' Available: https://www.stevenabbott.co.uk/practical-adhesion/g-rlap.php, [Access: 2017 July 7]. [51] S. O. Olajide, 'Progress on investigation on damage analysis in bonded polymer composites under fatigue,' International Journal of Fatigue, vol. 96, pp. 224-236, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69030 | - |
| dc.description.abstract | 複合材料因具有輕巧及堅韌的特性,被廣泛運用至許多產業,如:汽車工業、造船工業、航太工業以及風力發電等。膠合法(Adhesively Bonded Method)為連結複合材料的主要方法,許多學者也致力於研究如何提升膠合接點的強度,近年來,改變膠合接點的外型(如:波浪形試片、試片導角)也成為一研究方向。本研究提出一可增強玻璃纖維複合材料單搭接膠合試片強度之實驗方法,應用複合材料Seemann真空灌注製程(Seemann Composite Resin Infusion Molding Process, SCRIMP),在欲疊層的纖維下方埋入具有硬度的線材,此線材可以在真空製程中被大氣壓力壓抑成一曲形表面,注入樹脂後熱硬化形成一具有曲形表面的複合材料。本研究參照美國材料試驗學會(American Society for Testing and Materials, ASTM)所制定的複合材料膠合試片測試標準ASTM D5868-01製作單搭接膠合試片。為確認此方法可確實提升膠合接點強度,由同一塊複合材料版中取材,製作出具平坦膠合介面的傳統膠合接點,以及具有曲形介面的改良接點,以拉伸試驗測試接點的剪切強度,實驗結果顯示本研究所提出的實驗方法可提生複合材料單搭接接點的強度。另一方面,本研究亦建立有限元素分析模型,模擬試片受外力拉伸下的力學行為,進行收斂性分析確認模型的正確性,並且紀錄收斂性分析時遇到的問題以提供給後人參考。也進行膠合區中心線的應力分析,並且進行不同參數改變如:埋設材料種類、直徑大小、距邊界長度以及排列方式探討,討論出可降低最多剝離應力峰值的試片外型。最後將實驗與模擬具相同情況的結果互相討論,分析其中出現差異的原因,整合為本研究之結論。本研究所提出之製作曲形表面方法不需特別訂作模具,且可以直接應用於現有模具上,具有其便利性且有利於推廣至應用複合材料的相關產業。 | zh_TW |
| dc.description.abstract | The composite material has been widely applied in different engineering fields like automobiles, naval architectures, aerospace, and wind power due to its lightweight and strength. Many researchers have investigated the means for enhancing the strength of the bonded joint of composite material. Specifically, the investigators have focused on the change the surface geometry (e.g. wavy, taper, fillet) of the composite to improve the tensile strength and decrease stress concentration of the bonded area. In this research, a method capable of improving the tensile strength of the adhesively bonded single-lap joint is introduced. The enhanced material was embedded into the glass fiber in the Seemann Composite Resin Infused Molding Process (SCRIMP) and formed a wrinkled surface composite material. The composite single-lap joint specimens were fabricated by following the ASTM D5868 01 standard and subjected to the tensile test to compare the strength of the conventional single-lap joint and the improved wrinkled surfaced single-lap joint. The test results have suggested that the wrinkled interface formed by the embedded material could successfully improve the strength. Simultaneously, the finite element models of these two geometries of single-lap joints were established to analyze the stress distribution within the bonded area. Parametric study such as changing embedded materials, distance from the overlap boundary, and arrangement of embedded material has been done. In addition, differences between the experiment and simulation are discussed and concluded. Moreover, this research, which the common composite material fabrication process, SCRIMP, is applied to make wrinkled surface without a special mold is easier to promote to the industry. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:48:04Z (GMT). No. of bitstreams: 1 ntu-106-R04525021-1.pdf: 10423052 bytes, checksum: 4f4e5016c27b2ab53e3b6215d39ac76e (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xiv 第一章、 簡介 1 1.1 研究動機 1 1.2 研究背景 2 1.3 研究目的 4 1.4 重要性與貢獻 4 1.5 名詞對照與符號說明 5 第二章、 文獻探討 8 2.1 膠合接點數學模型 9 2.2 有限元素法在膠合接點的應用 12 2.3 導角、缺口對結構膠及試片的影響 16 2.4 非平滑表面試片 21 第三章、 研究方法 25 3.1 複合材料製作 26 3.2 曲形表面製作 27 3.3 試片準備 30 3.4 試片測試方法 37 3.5 有限元素分析 38 第四章、 結果 48 4.1 複合材料拉伸測試 48 4.2 複合材料單搭接試片剪切試驗 50 4.3 複合材料單搭接接點應力分析 77 第五章、 討論 98 5.1 實驗試片強度 98 5.2 長尾夾夾力對試片強度影響 99 5.3 試片破壞模式與強度之關係 100 5.4 數值模型參數分析 101 5.5 實驗與數值模擬比較 104 第六章、 結論與未來展望 107 6.1 結論 107 6.2 未來展望 109 參考文獻 110 附錄 115 附錄A收斂性分析結果 115 附錄B數值模型設定 117 附錄C實驗試片破壞模式 122 附錄D 實驗試片尺寸資料表 143 | |
| dc.language.iso | zh-TW | |
| dc.subject | 單搭接接點 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 曲形介面 | zh_TW |
| dc.subject | 非平表面 | zh_TW |
| dc.subject | 應力分析 | zh_TW |
| dc.subject | Stress analysis | en |
| dc.subject | Composite material | en |
| dc.subject | Single-lap joint | en |
| dc.subject | Wrinkled interface | en |
| dc.subject | Non-flat surface | en |
| dc.title | 曲形界面應用於複合材料單搭接膠合試片剪切強度提升之方法與數值分析 | zh_TW |
| dc.title | Experimental and Numerical Analysis of Application of Wrinkled Interface on Enhancing the Strength Composite Single-Lap Joint | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李雅榮,林輝政,宋家驥 | |
| dc.subject.keyword | 複合材料,單搭接接點,曲形介面,非平表面,應力分析, | zh_TW |
| dc.subject.keyword | Composite material,Single-lap joint,Wrinkled interface,Non-flat surface,Stress analysis, | en |
| dc.relation.page | 149 | |
| dc.identifier.doi | 10.6342/NTU201703396 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 10.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
