請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6902完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱家瑩 | |
| dc.contributor.author | Chi-Kai Chang | en |
| dc.contributor.author | 張智凱 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:20:45Z | - |
| dc.date.available | 2017-03-19 | |
| dc.date.available | 2021-05-17T09:20:45Z | - |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-15 | |
| dc.identifier.citation | Adell, T., Salo, E., Boutros, M., and Bartscherer, K. (2009). Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration. Development 136, 905-910.
Anderson, P., and Kedersha, N. (2006). RNA granules. J Cell Biol 172, 803-808. Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741. Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P. (2008). The impact of microRNAs on protein output. Nature 455, 64-71. Baguna, J., and Romero, R. (1981). Quantitative-Analysis of Cell-Types during Growth, Degrowth and Regeneration in the Planarians Dugesia-Mediterranea and Dugesia-Tigrina. Hydrobiologia 84, 181-194. Baguna, J., Salo, E., and Auladell, C. (1989). Regeneration and Pattern-Formation in Planarians .3. Evidence That Neoblasts Are Totipotent Stem-Cells and the Source of Blastema Cells. Development 107, 77-86. Bardeen, C.R., and Baetjer, F.H. (1904). The inhibitive action of the Roentgen rays on regeneration in planarians. Journal of Experimental Zoology 1, 191-195. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. Bashkirov, V.I., Scherthan, H., Solinger, J.A., Buerstedde, J.M., and Heyer, W.D. (1997). A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136, 761-773. Betchaku, T. (1967). Isolation of planarian neoblasts and their behavior in vitro with some aspects of the mechanism of the formation of regeneration blastema. J Exp Zool 164, 407-433. Betchaku, T. (1970). The cellular mechanism of the formation of a regeneration blastema of fresh-water planaria, Dugesia dorotocephala. I. The behavior of cells in a tiny body fragment isolated in vitro. J Exp Zool 174, 253-279. Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17, 170-180. Bonuccelli, L., Rossi, L., Lena, A., Scarcelli, V., Rainaldi, G., Evangelista, M., Iacopetti, P., Gremigni, V., and Salvetti, A. (2010). An RbAp48-like gene regulates adult stem cells in planarians. J Cell Sci 123, 690-698. Brøndsted, H.V. (1969). Planarian regeneration. Pergamon Press. Oxford. Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103. Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25-36. Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol 3, e85. Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-1966. Carmell, M.A., Xuan, Z.Y., Zhang, M.Q., and Hannon, G.J. (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Gene Dev 16, 2733-2742. Cerutti, H., and Casas-Mollano, J.A. (2006). On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50, 81-99. Chai, G., Ma, C., Bao, K., Zheng, L., Wang, X., Sun, Z., Salo, E., Adell, T., and Wu, W. (2010). Complete functional segregation of planarian beta-catenin-1 and -2 in mediating Wnt signaling and cell adhesion. J Biol Chem 285, 24120-24130. Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86. Conte, M., Deri, P., Isolani, M.E., Mannini, L., and Batistoni, R. (2009). A mortalin-like gene is crucial for planarian stem cell viability. Developmental Biology 334, 109-118. Eisenhoffer, G.T., Kang, H., and Sanchez Alvarado, A. (2008). Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3, 327-339. Farrar, G.J., Millington-Ward, S., Chadderton, N., Humphries, P., and Kenna, P.F. (2011). Gene-based therapies for dominantly inherited retinopathies. Gene Ther. Fernandez-Taboada, E., Moritz, S., Zeuschner, D., Stehling, M., Scholer, H.R., Salo, E., and Gentile, L. (2010). Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 137, 1055-1065. Forstemann, K., Tomari, Y., Du, T., Vagin, V.V., Denli, A.M., Bratu, D.P., Klattenhoff, C., Theurkauf, W.E., and Zamore, P.D. (2005). Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3, e236. Friedlander, M.R., Adamidi, C., Han, T., Lebedeva, S., Isenbarger, T.A., Hirst, M., Marra, M., Nusbaum, C., Lee, W.L., Jenkin, J.C., et al. (2009). High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci U S A 106, 11546-11551. Gentile, L., Cebria, F., and Bartscherer, K. (2011). The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis Model Mech 4, 12-19. Guo, T., Peters, A.H., and Newmark, P.A. (2006). A Bruno-like gene is required for stem cell maintenance in planarians. Dev Cell 11, 159-169. Gurley, K.A., Rink, J.C., and Sanchez Alvarado, A. (2008). Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323-327. Hatfield, S.D., Shcherbata, H.R., Fischer, K.A., Nakahara, K., Carthew, R.W., and Ruohola-Baker, H. (2005). Stem cell division is regulated by the microRNA pathway. Nature 435, 974-978. Hayashi, T., Asami, M., Higuchi, S., Shibata, N., and Agata, K. (2006). Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Development Growth & Differentiation 48, 371-380. Hendzel, M.J., Wei, Y., Mancini, M.A., Van Hooser, A., Ranalli, T., Brinkley, B.R., Bazett-Jones, D.P., and Allis, C.D. (1997). Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348-360. Hock, J., and Meister, G. (2008). The Argonaute protein family. Genome Biol 9, 210. Hori, I. (1991). Role of fixed parenchyma cells in blastema formation of the planarian Dugesia japonica. Int J Dev Biol 35, 101-108. Hoshi, M., Kobayashi, K., Arioka, S., Hase, S., and Matsumoto, M. (2003). Switch from Asexual to Sexual Reproduction in the Planarian Dugesia ryukyuensis. Integr Comp Biol 43, 242-246. Houbaviy, H.B., Murray, M.F., and Sharp, P.A. (2003). Embryonic stem cell-specific MicroRNAs. Dev Cell 5, 351-358. Hutvagner, G., and Simard, M.J. (2008). Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9, 22-32. Johnston, R.J., and Hobert, O. (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845-849. Kim, K., Lee, Y.S., and Carthew, R.W. (2007). Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13, 22-29. Kosik, K.S., and Krichevsky, A.M. (2002). The message and the messenger: delivering RNA in neurons. Sci STKE 2002, pe16. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419. Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. Lillie, F.R. (1900). Some notes on regeneration and regulation in planarians. Am Nat 34, 173-177. Liu, J.D., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441. Lu, Y.C., Smielewska, M., Palakodeti, D., Lovci, M.T., Aigner, S., Yeo, G.W., and Graveley, B.R. (2009). Deep sequencing identifies new and regulated microRNAs in Schmidtea mediterranea. RNA 15, 1483-1491. Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B., and Rigoutsos, I. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203-1217. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H., and Siomi, M.C. (2005). Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19, 2837-2848. Morgen, T.H. (1901). regeneration. Nakagawa, H., Ishizu, H., Hasegawa, R., Kobayashi, K., and Matsumoto, M. (2012). Drpiwi-1 is essential for germline cell formation during sexualization of the planarian Dugesia ryukyuensis. Dev Biol 361, 167-176. Naoghare, P.K., Tak, Y.K., Kim, M.J., Han, E., and Song, J.M. (2011). Knock-down of argonaute 2 (AGO2) induces apoptosis in myeloid leukaemia cells and inhibits siRNA-mediated silencing of transfected oncogenes in HEK-293 cells. Basic Clin Pharmacol Toxicol 109, 274-282. Newmark, P.A., and Sanchez Alvarado, A. (2002). Not your father's planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3, 210-219. Nover, L., Scharf, K.D., and Neumann, D. (1989). Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9, 1298-1308. Orii, H., Sakurai, T., and Watanabe, K. (2005). Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Development Genes and Evolution 215, 143-157. Oviedo, N.J., and Levin, M. (2007a). smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development 134, 3121-3131. Oviedo, N.J., and Levin, M. (2007b). smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development 134, 3121-3131. Palakodeti, D., Smielewska, M., and Graveley, B.R. (2006). MicroRNAs from the Planarian Schmidtea mediterranea: a model system for stem cell biology. RNA 12, 1640-1649. Palakodeti, D., Smielewska, M., Lu, Y.C., Yeo, G.W., and Graveley, B.R. (2008). The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14, 1174-1186. Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425, 257-263. Pearson, B.J., and Sanchez Alvarado, A. (2010). A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development 137, 213-221. Petersen, C.P., and Reddien, P.W. (2008). Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319, 327-330. Petersen, C.P., and Reddien, P.W. (2009). A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A 106, 17061-17066. Randolph, H. (1897). Observations and experiments on regeneration in planarians. Arch Entw Mech Org, 5,352 -355,372. Reddien, P.W., Bermange, A.L., Kicza, A.M., and Alvarado, A.S. (2007). BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134, 4043-4051. Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C., and Sanchez Alvarado, A. (2005). SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327-1330. Rouhana, L., Shibata, N., Nishimura, O., and Agata, K. (2010). Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Dev Biol 341, 429-443. Sakai, F., Agata, K., Orii, H., and Watanabe, K. (2000). Organization and regeneration ability of spontaneous supernumerary eyes in planarians - Eye regeneration field and pathway selection by optic nerves. Zool Sci 17, 375-381. Salo, E., and Baguna, J. (1984a). Regeneration and Pattern-Formation in Planarians .1. The Pattern of Mitosis in Anterior and Posterior Regeneration in Dugesia (G) Tigrina, and a New Proposal for Blastema Formation. J Embryol Exp Morph 83, 63-80. Salo, E., and Baguna, J. (1984b). Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 83, 63-80. Salo, E., and Baguna, J. (1989). Regeneration and Pattern-Formation in Planarians .2. Local Origin and Role of Cell Movements in Blastema Formation. Development 107, 69-76. Salo, E., and Baguna, J. (2002). Regeneration in planarians and other worms: New findings, new tools, and new perspectives. J Exp Zool 292, 528-539. Salvetti, A., Rossi, L., Deri, P., and Batistoni, R. (2000). An MCM2-related gene is expressed in proliferating cells of intact and regenerating planarians. Dev Dyn 218, 603-614. Salvetti, A., Rossi, L., Lena, A., Batistoni, R., Deri, P., Rainaldi, G., Locci, M.T., Evangelista, M., and Gremigni, V. (2005). DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132, 1863-1874. Schisa, J.A., Pitt, J.N., and Priess, J.R. (2001). Analysis of RNA associated with P granules in germ cells of C. elegans adults. Development 128, 1287-1298. Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208. Scimone, M.L., Meisel, J., and Reddien, P.W. (2010). The Mi-2-like Smed-CHD4 gene is required for stem cell differentiation in the planarian Schmidtea mediterranea. Development 137, 1231-1241. Slack, J.M. (1980). The source of cells for regeneration. Nature 286, 760. Slack, J.M. (2011). Development. Planarian pluripotency. Science 332, 799-800. Solana, J., Lasko, P., and Romero, R. (2009). Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 328, 410-421. Song, J.J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437. Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270, 488-498. Tabara, H., Yigit, E., Siomi, H., and Mello, C.C. (2002). The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861-871. Tamura, S., Yamamoto, K., Takai, M., Oki, I., and Kawakatsu, M. (1998). Karyology and biogeography of Dugesia japonica and Dugesia ryukyuensis in Kyushu, southern Japan. Hydrobiologia 383, 321-327. Tian, Q.N., Bao, Z.X., Lu, P., Qin, Y.F., Chen, S.J., Liang, F., Mai, J., Zhao, J.M., Zhu, Z.Y., Zhang, Y.Z., et al. (2011). Differential expression of microRNA patterns in planarian normal and regenerative tissues. Mol Biol Rep. Umesono, Y., Tasaki, J., Nishimura, K., Inoue, T., and Agata, K. (2011). Regeneration in an evolutionarily primitive brain--the planarian Dugesia japonica model. Eur J Neurosci 34, 863-869. Wagner, D.E., Wang, I.E., and Reddien, P.W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811-816. Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M.M. (2003). Structure and conserved RNA binding of the PAZ domain. Nature 426, 468-474. Yoshida-Kashikawa, M., Shibata, N., Takechi, K., and Agata, K. (2007). DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons. Dev Dyn 236, 3436-3450. Yuan, Y.R., Pei, Y., Ma, J.B., Kuryavyi, V., Zhadina, M., Meister, G., Chen, H.Y., Dauter, Z., Tuschl, T., and Patel, D.J. (2005). Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell 19, 405-419. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6902 | - |
| dc.description.abstract | 渦蟲是一種具有再生能力的扁形動物,能由身體一部分片段再生出包含腦部的完整個體。渦蟲的再生能力建立在一群多功能成體幹細胞(neoblast)身上,他們可以進行複製以及分化來替換身體所有的組織,而且這群細胞對γ-射線很敏感。Dugesia japonica(東洋渦蟲)的DjAgo2蛋白是人類Ago2的同源蛋白質,在人類細胞上的研究顯示hsAgo2是miRNA和siRNA路徑中的關鍵因子,具有調控基因表現的能力。本研究中,我們首先選殖DjAgo2之完整全長cDNA並構築與YFP蛋白接合之重組蛋白表現載體,將其表現在HeLa cell中。在螢光顯微鏡下觀察發現,DjAgo2會和人類的P-body組成物RCK等聚集於細胞質內,這現象和hsAgo2的表現很類似。藉由整體原位雜交的實驗,發現Djago2高度表現在渦蟲的頭部和背中線上。渦蟲尾部再生的實驗中顯示在blastema以及post-blastema兩區Djago2的表現量在再生時會上升,而RT-qPCR的結果也顯示其表現量在再生第三天的blastema和post-blastema中,分別高出平常的五倍和兩倍。藉由FACS來分離neoblast和已分化細胞,發現Djago2在成體幹細胞中的表現量較高,而且γ-射線會使得部分表現Djago2的細胞消失。最後,用Djago2 dsRNA來餵食渦蟲以抑制蟲體中Djago2的表現,渦蟲會失去再生的能力而且會喪失組織恆定性。RT-qPCR的結果顯示表現在幹細胞 (DjpiwiA)以及合成DNA (Djpcna) 的基因表現量在抑制Djago2後會下降。而且,M phase的細胞減少以及G2 phase的細胞增加顯示抑制Djago2會使得成體幹細胞的細胞周期停留在G2 phase而無法進行有絲分裂。同時,也觀察到部分渦蟲出現分化受到限制的現象。我們的實驗結果顯示,Djago2在渦蟲成體幹細胞的細胞複製、自我更新以及分化時都被需要的,可以藉由對於成體幹細胞的調控來影響渦蟲的再生能力。 | zh_TW |
| dc.description.abstract | Planarians are capable of regenerating almost every part of their body, including the brain. Regeneration in planarians is mediated by a group of pluripotent adult somatic stem cells, called neoblasts, which can proliferate and differentiate to replace all tissues. These cells are sensitive to γ-irradiation. DjAgo2 of Dugesia japonica is a homolog of hsAgo2, the key factor that regulates gene expression in miRNA and siRNA pathways. In the study, DjAgo2 was cloned, and YFP-tagged DjAgo2 was expressed in HeLa cells. DjAgo2 accumulates at specific foci that contain the P-body component, RCK. This pattern is similar to what we observed with hsAgo2. By whole-mount in situ hybridization (WISH), Djago2 was found to be highly expressed in regions of the brain and the middle dorsal line. Djago2 expression was increased in the blastema and post-blastema during regeneration. RT-qPCR results confirmed that respective Djago2 mRNA expression levels in the blastema and post-blastema were 5 and 2-times higher than that in the control at 3 days post-amputation. WISH data showed that a portion of Djago2-positive cells were depleted by γ-irradiation. We next examined Djago2 expression levels in neoblasts isolated by FACS. Our RT-qPCR data showed that the Djago2 level was higher in neoblasts than that in differentiated cells. Finally, Djago2 was silenced by feeding planarians Djago2 dsRNA. Depletion of Djago2 resulted in loss of the regeneration capacity and defects in tissue homeostasis in planarians. Djago2 silencing reduced levels of DjpiwiA, Djpcna, and DjpiwiC. Our data also showed that the ratio of M-phase cells was decreased and the ratio of G2-phase cells was increased in Djago2-silenced animals. This suggests that Djago2 silencing blocked the mitosis of neoblasts. Differentiation restriction was also observed in Djago2-silenced animals. Our data indicate that Djago2 is required for neoblast proliferation, and differentiation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:20:45Z (GMT). No. of bitstreams: 1 ntu-101-R98b41032-1.pdf: 4982414 bytes, checksum: 8f8197cb44001d8238dea831e7432c28 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1. Introduction
1.1 Planarians and regeneration……………………………………………………1 1.2 Blastema and neoblasts…………….…………..………………………………3 1.3 Small RNAs in planarian…………..………………………………..…………9 1.4 Argonaute proteins…………………………………..…………..……………13 2. Materials and Methods 2.1 Animals…………………………………………………………………….…16 2.2 5’ Rapid amplification of complementary (c)DNA ends (RACE) and 3’RACE ……………………………………………………………..…….…16 2.3 Expression vectors……………………………………………………………17 2.4 Cell culture and transfection…………………………………………….……17 2.5 Immunofluorescence…………………………………………………………18 2.6 Whole mount in situ hybridization……………………………………..….…18 2.7 Preparation of single-cell suspensions for fluorescence-activated cell sorting analysis………………………………………………………………….……19 2.8 Quantitative PCR………………………………………………….…...….…20 2.9 RNA interference (RNAi) experiments ………………………….….…....…21 2.10 Anti-phospho-histone H3 labeling……………………….………..…………22 3. Result 3.1.1 Cloning of planarian Argonaute pretein-DjAgo2…………………………24 3.1.2 The subcellular distribution of DjAgo2 is similar to that of human AGO2 localizing to P-body……………………………………………….………24 3.2.1 Expression pattern and level of Djago2 in planarian………………………25 3.2.2 Djago2 is highly expressed in regenerating region……………..…………26 3.3.1 γ-irradiation eliminates the Djago2-positive cells…………………….….28 3.3.2 Djago2 is highly expressed in neoblasts ………………………….….……30 3.4.1 Failure to regenerate in Djago-silenced animals……………………….…31 3.4.2 Tissue homeostasis defect was observed in long-term Djago2 RNAi treated animals……………………………………………………………………33 4. Discussion 4.1 DjAgo2 is a member of the Argonaute subfamily……………………….…..35 4.2 Djago2 is up regulated in regenerating tissue during planarian regeneration.……………………………………………………………………………36 4.3 Expression level of Djago2 is higher in neoblasts than in differentiated cells.……………………………………………………………………………37 4.4 Djago2 is required for proliferation of neoblasts and differentiation of progenitor cells ……………………….………………………………………38 5. References……………………….…………………………………….………42 6. Figures……………………….…………………………………….…………..55 | |
| dc.language.iso | en | |
| dc.title | 探討DjAgo2蛋白在渦蟲再生中所扮演的角色 | zh_TW |
| dc.title | Study on the role of Argonaute protein DjAgo2
in planarian regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊宏,李心予,詹世鵬 | |
| dc.subject.keyword | 渦蟲,再生,成體幹細胞, | zh_TW |
| dc.subject.keyword | planarian,Ago2,neoblast,stem cell,regeneration, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-02-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 4.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
