Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃良得(Lean-Teik Ng)
dc.contributor.authorJin-Yi Chngen
dc.contributor.author莊靖宜zh_TW
dc.date.accessioned2021-06-17T02:47:18Z-
dc.date.available2022-08-18
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. 陳文彬。2010。利用主動誘變與基因靜默技術提高牛樟芝菌絲體中抗發炎與抗氧化之活性成分含量。朝陽科技大學生化科技研究所碩士論文,台中,台灣。104頁。
2. Adachi, Y., N. Ohno, M. Ohsawa, S. Oikawa and T. Yadomae. 1990. Change of biological activities of (1→3)-β-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment. Chemical and Pharmaceutical Bulletin 38: 477-481.
3. Aspinall, G. O. 2014. The polysaccharides. United States: Academic Press. 365-411.
4. Bao, X.F., X.S. Wang, Q. Dong, J.N. Fang and X.Y. Li. 2002. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 59: 175-181.
5. Bertani, B. and N. Ruiz. 2018. Function and biogenesis of lipopolysaccharides. EcoSal Plus 8(1).
6. Bonizzi, G. and M. Karin. 2004. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends in immunology 25: 280-288.
7. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
8. Bryan, N.S. and M.B. Grisham. 2007. Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biology and Medicine 43: 645-657.
9. Butler J. M. 2015. The future of forensic DNA analysis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 370: 1674.
10. Cör, D., Ž. Knez and M. Knez Hrnčič. 2018. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules 23: 649.
11. Cai, C., J. Ma, C. Han, Y. Jin, G. Zhao and X. He. 2019. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Scientific Reports 9: 7418.
12. Chakraborty, I., I.K. Sen, S. Mondal, D. Rout, S.K. Bhanja, G.N. Maity and P. Maity. 2019. Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. Biocatalysis and Agricultural Biotechnology 22: 101425.
13. Chan, G.C.F., W.K. Chan and D.M.Y. Sze. 2009. The effects of β-glucan on human immune and cancer cells. Journal of Hematology and Oncology 2: 25.
14. Chang, C.J., C.C. Lu, C.S. Lin, J. Martel, Y.F. Ko, D.M. Ojcius, T.R. Wu, Y.H. Tsai, T.S. Yeh, J.J. Lu, H.C. Lai and J.D. Young. 2017. Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. International Journal of Obesity 42: 231-243
15. Chang, R. 2009. Functional properties of edible mushrooms. Nutrition Reviews 54: S91-S93.
16. Chaplin, D.D. 2010. Overview of the immune response. Journal of Allergy and Clinical Immunology 125: S3-23.
17. Chen, C.C., Y.W. Liu, Y.B. Ker, Y.Y. Wu, E.Y. Lai, C.C. Chyau, T.H. Hseu and R.Y. Peng. 2007. Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. Journal of Agricultural and Food Chemistry 55: 5007-5012.
18. Chen, S.P., C.C. Liu, X.J. Huang, L.Y. Hu, Y.S. Huang, H.Z. Chen, Q.Y. Fang, N. Dong, M.Z. Li, W. Tang and S.P. Nie. 2020. Comparison of immunomodulatory effects of three polysaccharide fractions from Lentinula edodes water extracts. Journal of Functional Foods 66: 103791.
19. Chen, Y.C., Y.L. Liu, F.Y. Li, C.I. Chang, S.Y. Wang, K.Y. Lee, S,L. Li, Y.P. Chen, T.R. Jinn and J.T.C. Tzen. 2011. Antcin A, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids. Acta Pharmacologica Sinica 32: 904-911.
20. Chen, Y.F., C.H. Chang, Z.N. Huang, Y.C. Su, S.J. Chang and J.S. Jan. 2019. The JAK inhibitor antcin H exhibits direct anticancer activity while enhancing chemotherapy against LMP1-expressed lymphoma. Leukemia and Lymphoma 60: 1193-1203.
21. Cheng, J.J., C.H. Chao, P.C. Chang and M.K. Lu. 2016. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloids 53: 37-45.
22. Cherng, I.H., D.P. Wu and H.C. Chiang. 1996. Triterpenoids from Antrodia cinnamomea. Phytochemistry 41: 263-267.
23. Chihara, G., J. Hamuro, Y. Maeda, Y. Arai and F. Fukuoka. 1970. Antitumour polysaccharide derived chemically from natural glucan (pachyman). Nature 225: 943-944.
24. Chiu, C.H., C.C. Peng, Y.B. Ker, C.C. Chen, A. Lee, W.L. Chang, C.C. Chyau and R.Y. Peng. 2013. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia. Molecules 19: 22-40.
25. Chung, C.H., S.C. Yeh, H.C. Tseng, M.L. Siu and K.T. Lee. 2016. Chemical quality evaluation of Antrodia cinnamomea fruiting bodies using phytomics similarity index analysis. Journal of Food and Drug Analysis 24: 173-178.
26. Chung, K.F. 2009. Cytokines. pp. 327-341. In Asthma and COPD: Basic Mechanisms and Clinical Management. Academic Press, USA.
27. Cui, L.R., Y.X. Sun, H. Xu, H.Y. Xu, H. Cong and J.C. Liu. 2013. A polysaccharide isolated from Agaricus blazei Murill (ABP-AW1) as a potential Th1 immunity-stimulating adjuvant. Oncology Letters 6: 1039-1044.
28. Cui, X.Y., J.H. Kim, X. Zhao, B.Q. Chen, B.C. Lee, H.B. Pyo, Y.P. Yun and Y.H. Zhang. 2006a. Antioxidative and acute anti-inflammatory effects of Campsis grandiflora flower. Journal of Ethnopharmacology 103: 223-228.
29. Cui, Z.W., S.Y. Xu, D.W. Sun and W. Chen. 2006b. Dehydration of concentrated Ganoderma lucidum extraction by combined microwave-vacuum and conventional vacuum drying. Drying Technology 24: 595-599..
30. Dai, J., Y. Wu, S.W. Chen, S. Zhu, H.P. Yin, M. Wang and J. Tang. 2010. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydrate Polymers 82: 629-635.
31. Deng, J.S., S.S. Huang, T.H. Lin, M.M. Lee, C.C. Kuo, P.J. Sung, W.C. Hou, G.J. Huang and Y.H. Kuo. 2013. Analgesic and anti-inflammatory bioactivities of eburicoic acid and dehydroeburicoic acid isolated from Antrodia camphorata on the inflammatory mediator expression in mice. Journal of Agricultural and Food Chemistry 61: 5064-5071.
32. Dong, Z., D. Zhang, R. Yang and S. Wang. 2014. Paclitaxel: new uses for an old drug. Drug Design, Development and Therapy 8: 279-284.
33. Dudhgaonkar, S., A. Thyagarajan and D. Sliva. 2009. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. International Immunopharmacology 9: 1272-1280.
34. Escarnot, E., M. Aguedo, R. Agneessens, B. Wathelet and M. Paquot. 2011. Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: study of the hydrolysis conditions for monosaccharides analysis. Journal of Cereal Science 53: 45-52.
35. Feeney, M.J., J. Dwyer, C.M. Hasler-Lewis, J.A. Milner, M. Noakes, S. Rowe, M. Wach, R.B. Beelman, J. Caldwell, M.T. Cantorna, L.A. Castlebury, S.T. Chang, L.J. Cheskin, R. Clemens, G. Drescher, V.L. Fulgoni, D.B. Haytowitz, V.S. Hubbard, D. Law, A.M. Miller, B. Minor, S.S. Percival, G. Riscuta, B. Schneeman, S. Thornsbury, C.D. Toner, C.E. Woteki and D.Y. Wu. 2014. Mushrooms and Health Summit Proceedings. Journal of Nutrition 144: 1128S-1136S.
36. Feghali, C.A. and T.M. Wright. 1997. Cytokines in acute and chronic inflammation. Frontiers in Bioscience 2: 12-26
37. Geethangili, M. and Y.M. Tzeng. 2011. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-Based Complementary and Alternative Medicine 2011: 1-17.
38. Guha, M. and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13: 85-94.
39. Guo, M.Q., X. Hu, C. Wang, and L. Ai. 2017. pp. 7-21. Polysaccharides: structure and solubility. IntechOpen, UK.
40. Han, X.Q., G.L. Yue, R.Q. Yue, C.X. Dong, C.L. Chan, C.H. Ko, W.S. Cheung, K.W. Luo, C.K. Wong, P.C. Leung and Q.B. Han. 2014. Structure elucidation and immunomodulatory activity of a beta glucan from the fruiting bodies of Ganoderma sinense. Plos One 9: e100380.
41. Hou, C.Y., L.L. Chen, L.Z. Yang and X.L. Ji. 2020. An insight into anti-inflammatory effects of natural polysaccharides. International Journal of Biological Macromolecules 153: 248-255.
42. Hseu, Y.C., F.Y. Wu, J.J. Wu, J.Y. Chen, W.H. Chang, F.J. Lu, Y.C. Lai and H.L. Yang. 2005. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-кB pathway. International Immunopharmacology 5: 1914-1925.
43. Huang, H.T., S.L. Wang, V.B. Nguyen and Y.H. Kuo. 2018. Isolation and identification of potent antidiabetic compounds from Antrodia cinnamomea - An Edible Taiwanese Mushroom. Molecules 23: 2864
44. Huang, T.T., Y.W. Lan, C.M. Chen, Y.F. Ko, D.M. Ojcius, J. Martel, J.D. Young and K.Y. Chong. 2019. Antrodia cinnamomea induces anti-tumor activity by inhibiting the STAT3 signaling pathway in lung cancer cells. Scientific Reports 9: 5145
45. Hyde, K.D., J.C. Xu, S. Rapior, R. Jeewon, S. Lumyong, A.G.T. Niego, P.D. Abeywickrama, J.V.S. Aluthmuhandiram, R.S. Brahamanage, S. Brooks, A. Chaiyasen, K.W.T. Chethana, P. Chomnunti, C. Chepkirui, B. Chuankid, N.I.D. Silva, M. Doilom, C. Faulds, E. Gentekaki, V. Gopalan, P. Kakumyan, D. Harishchandra, H. Hemachandran, S. Hongsanan, A. Karunarathna, S.C. Karunarathna, S. Khan, J. Kumla, R.S. Jayawardena, J.K. Liu, N.G Liu, T. Luangharn, A.P.G. Macabeo, D.S. Marasinghe, D. Meeks, P.E. Mortimer, P. Mueller, S. Nadir, K.N. Nataraja, S. Nontachaiyapoom, M.O. Brien, W. Penkhrue, C. Phukhamsakda, U.S. Ramanan, A. R. Rathnayaka, R.B. Sadaba, B. Sandargo, B.C. Samarakoon, D.S. Tennakoon, R. Siva, W. Sriprom, T.S. Suryanarayanan, K. Sujarit, N. Suwannarach, T. Suwunwong, B. Thongbai, N. Thongklang, D. Wei, S.N. Wijesinghe, J. Winiski, J.Y. Yan, E. Yasanthika and M. Stadler. 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97: 1-136.
46. Joseph, S., B. Sabulal, V. George, K. Antony and K. Janardhanan. 2011. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharmaceutica 61: 335-342.
47. Kaiser, C., S. Michaelis and A. Mitchell. 1994. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, NY. p 234
48. Kan, Y.J., T.Q. Chen, Y.B. Wu, J.G. Wu and J.Z. Wu. 2015. Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. International Journal of Biological Macromolecules 72: 151-157.
49. Ker, Y.B., C.C. Peng, W.L. Chang, C.C. Chyau and R.Y. Peng. 2014. Hepatoprotective bioactivity of the glycoprotein, antrodan, isolated from Antrodia cinnamomea mycelia. Plos One 9: e93191.
50. Knott, A.B. and E.B. Wetzel. 2009. Nitric oxide in health and disease of the nervous system. Antioxidants and Redox Signaling 11: 541-554.
51. Kochan, E., G. Szymańska, M. Wielanek, A.W. Owczarek, M.J. Bębenista and I.G. Karolak. 2019. The content of triterpene saponins and phenolic compounds in American ginseng hairy root extracts and their antioxidant and cytotoxic properties. Plant Cell, Tissue and Organ Culture 138: 353-362.
52. Kumar, K.J.S., M.G. Vani, C.Y. Chen, W.W. Hsiao, J. Li, Z.X. Lin, F.H. Chu, G.C. Yen and S.Y. Wang. 2020. A mechanistic and empirical review of antcins, a new class of phytosterols of formosan fungi origin. Jounal of Food and Drug Analysis 28: 38-59.
53. Lai, C.I., Y.L. Chu, C.T. Ho, Y.C. Su, Y.H. Kuo and L.Y. Sheen. 2016. Antcin K, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces mitochondria and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells. Journal of Traditional and Complementary Medicine 6: 48-56.
54. Lee, J.H., Y.J. Lee, J.K. Shin, J.W. Nam, S.Y. Nah, S.H. Kim, J.H. Jeong, Y.S. Kim, M.K. Shin, M.C. Hong, E.K. Seo and H.S. Bae. 2009. Effects of triterpenoids from Poria cocos Wolf on the serotonin type 3A receptor-mediated ion current in Xenopus oocytes. European Journal of Pharmacology 615: 27-32.
55. Li, S.Q. and N.P. Shah. 2016. Anti-inflammatory and anti-proliferative activities of natural and sulphonated polysaccharides from Pleurotus eryngii. Journal of Functional Foods 23: 80-86.
56. Li, S.J., Q.P. Xiong, X.P. Lai, X. Li, M.J. Wan, J.N. Zhang, Y.J. Yan, M. Cao, J.M. Guan, D.Y. Zhang and Y. Lin. 2016. Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety 15: 237-250.
57. Li, Z.W., Y. Kuang, S.N. Tang, K. Li, Y. Huang, X. Qiao, S.W. Yu, Y.M. Tzeng, J.Y. Lo and M. Ye. 2017. Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl4-induced liver injury in mice. Journal of Ethnopharmacology 206: 31-39.
58. Liao, S.C., F.C. Wen, W.C. Chien and Y.H. Liao. 2017. Anticancer effects of different extracts of various Antrodia cinnamomea types on human liver HEPG2 cells and analyses of compositions and bioactivities. International Journal of Advances in Science Engineering and Technology 5: 41-51
59. Lin, C.C., I.H. Pan, Y.R. Li, Y.G. Pan, M.K. Lin, Y.H. Lu, H.C. Wu and C.L. Chu. 2015. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. Plos One 10: e0116191.
60. Lin, T.Y., C.Y. Chen, S.C. Chien, W.W. Hsiao, F.H. Chu, W.H. Li, C.C. Lin, J.F. Shaw and S.Y. Wang. 2011. Metabolite profiles for Antrodia cinnamomea fruiting bodies harvested at different culture ages and from different wood substrates. Journal of Agricultural and Food Chemistry 59: 7626-7635.
61. Lin, Y.S., Y.Y. Lin, Y.H. Yang, C.L. Lin, F.C. Kuan, C.N. Lu, G.H. Chang, M.S. Tsai, C.M. Hsu, R.A. Yeh, P.R. Yang, I.Y. Lee, L.H. Shu, Y.C. Cheng, H.T. Liu, K.D. Lee, D.C. Chang and C.Y. Wu. 2018. Antrodia cinnamomea extract inhibits the proliferation of tamoxifen-resistant breast cancer cells through apoptosis and skp2/microRNAs pathway. BMC Complementary and Alternative Medicine 18: 152
62. Lindsay, B.N. 2016. The immune system. Essays in Biochemistry 60: 275-301.
63. Liu, D.Z., H.J. Liang, C.H. Chen, C.H. Su, T.H. Lee, C.T. Huang, W.C. Hou, S.Y. Lin, W.B. Zhong, P.J. Lin, L.F. Hung and Y.C. Liang. 2007. Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of Taiwanofungus camphoratus in microglia and the mechanism of its action. Journal of Ethnopharmacology 113: 45-53.
64. Liu, X.D., M. Li, W.X. Li, Q.Y. Wang and H.X. Zhang. 2019. Combined effect of lentinan and cisplatin on cytokines IL-6, TNF-α, and TGF-β in tumor therapy. International Journal of Polymer Science 2019: 1-11.
65. Liu, Y.Q., Y.Q. Ding, M.Y., T. Zhu, D.B. Tian and K. Ding. 2017. A novel heterogalactan from Antrodia camphorata and anti-angiogenic activity of its sulfated derivative. Polymers 9: 228.
66. Liu, Y.G., A.H. Yang, Y.D. Qu, Z.Q. Wang, Y.Q. Zhang, Y. Liu, N. Wang, L.R. Teng and D. Wang. 2018. Ameliorative effects of Antrodia cinnamomea polysaccharides against cyclophosphamide-induced immunosuppression related to Nrf2/HO-1 signaling in BALB/c mice. International Journal of Biological Macromolecules 116: 8-15.
67. Ludwiczuk, A., K.S. Woźniak and M.I. Georgiev. 2017. Terpenoids. pp. 233-266. In Pharmacognosy: Fundamentals, Applications and Strategies. Academic Press, USA.
68. Ma, G.X., W.J. Yang, L.Y. Zhao, F. Pei, D.L. Fang and Q.H. Hu. 2018. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness 7: 125-133.
69. Macmicking, J., Q.W. Xie and C. Nathan. 1997. Nitric oxide and macrophage function. Annual Review of immunology 15: 323-350.
70. Maeda, Y.Y., S.T. Watanabe, C. Chihara and M. Rokutanda. 1988. Denaturation and renaturation of a β-1,6;1,3-glucan, lentinan, associated with expression of T cell-mediated responses. Cancer Research 48: 671-675.
71. Maehara, Y., S. Tsujitani, H. Saeki, E. Oki, K. Yoshinaga, Y. Emi, M. Morita, S.J. Kohnoe, Y. Kukeji, T. Yano and H. Baba. 2012. Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN®): review of development and future perspectives. Surgery Today 42: 8-28.
72. Masuko, T., A. Minami, N. Iwasaki, T. Majima, S. Nishimura and Y.C. Lee. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry 339: 69-72.
73. Meng, L.M., M.H. Pai, J.J. Liu and S.L. Yeh. 2012. Polysaccharides from extracts of Antrodia camphorata mycelia and fruiting bodies modulate inflammatory mediator expression in mice with polymicrobial sepsis. Nutrition 28: 942-949.
74. Meng, Y., J.M. Yan, G. Yang, Z. Han, G.H. Tai, H.R. Cheng and Y.F. Zhou. 2018. Structural characterization and macrophage activation of a hetero-galactan isolated from Flammulina velutipes. Carbohydrate Polymers 183: 207-218.
75. Mizuno, T., H. Saito, T. Nishitoba and H. Kawagishi. 1995. Antitumor‐active substances from mushrooms. Food Reviews International 11: 23-61.
76. Moore, J.E. and C.D. Bertram. 2018. Lymphatic system flows. Annual Review of Fluid Mechanics 50: 459–482.
77. Moradali, M.F., H. Mostafavi, S. Ghods and G.A. Hedjaroude. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International immunopharmacology 7: 701-724.
78. Ooi, E.C.V. and F. Liu. 2000. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medicinal Chemistry 7: 715-729.
79. Pahwa, R., A. Goyal, P. Bansal and I. Jialal. 2020. Chronic inflammation. pp. In StatPearls. Treasure Island (FL): StatPearls Publishing, USA.
80. Pan, M.H., C.S. Lai, S. Dushenkov and C.T. Ho. 2009. Modulation of inflammatory genes by natural dietary bioactive compounds. Journal of Agricultural and Food Chemistry 57: 4467-4477.
81. Parameswaran, N. and S. Patial. 2010. Tumor necrosis factor-α signaling in macrophages. Critical Reviews in Eukaryotic Gene Expression 20: 87-103.
82. Park, E.J., S.A. Kim, Y.M. Choi, H.K. Kwon, W.Y. Shim, G. Lee and S.D. Choi. 2011. Capric acid inhibits NO production and STAT3 activation during LPS-induced osteoclastogenesis. Plos One 6: e27739.
83. Perera, N., F.L. Yang, C.M. Chang, Y.T. Lu, S.H. Zhan, Y.T. Tsai, J.F. Hsieh, L.H. Li, K.F. Hua and S.H. Wu. 2017. Galactomannan from Antrodia cinnamomea enhances the phagocytic activity of macrophages. Organic Letters 19: 3486-3489.
84. Perera, N., F.L. Yang, Y.T. Lu, L.H. Li, K.F. Hua and S.H. Wu. 2018. Antrodia cinnamomea galactomannan elicits immuno-stimulatory activity through toll-like receptor 4. International Journal of Biological Sciences 14: 1378-1388.
85. Ren, L., C. Perera and Y. Hemar. 2012. Antitumor activity of mushroom polysaccharides: a review. Food and Function 3: 1118-1130.
86. Rosenkranz-Weiss, P.R., W.C. Sessa, S. Milstien, S. Kaufman, C.A. Watson and J.S. Pober. 1994. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Journal of Clinical Investigation 93: 2236-2243.
87. Sang, H.R. 2014. Lipopolysaccharide: basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intestinal Research 12: 90-95.
88. Scambia, G., U. Testa, P.B. Panici, E. Foti, R. Martucci, A. Gadducci, A.P.V. Facchini, C.Peschle and S. Mancuso. 1995. Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. British Journal of Cancer 71: 354-356.
89. Shan, J.H., J. Fu, Z.H. Zhao, X.Q. Kong, H. Huang, L. Luo and Z.M. Yin. 2009. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-κB and JNK/AP-1 activation. International Immunopharmacology 9: 1042-1048.
90. Sliva, D. 2003. Ganoderma lucidum (Reishi) in cancer treatment. Integrative Cancer Therapies 2: 358-364.
91. Su, C.H., M.N. Lai and L.T. Ng. 2017. Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa. Food Chemistry 220: 400-405.
92. Su, C.H., M.N. Lai, C.C. Lin and L.T. Ng. 2016. Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Applied Microbiology and Biotechnology 100: 4385-4393.
93. Tabata, K., W. Ito, T. Kojima, S. Kawabata and A. Misaki. 1981. Ultrasonic degradation of schizophyllan, an antitumor polysaccharide produced by Schizophyllum commune fries. Carbohydrate research 89: 121-135.
94. Tanner, J. and G. Tosato. 1991. Impairment of natural killer functions by interleukin 6 increases lymphoblastoid cell tumorigenicity in athymic mice. Journal of Clinical Investigation 88: 239-247.
95. Tien, A.J., C.Y. Chien, Y.H. Chen, L.C. Lin and C.T. Chien. 2017. Fruiting bodies of Antrodia cinnamomea and its active triterpenoid, antcin K, ameliorates N-nitrosodiethylamine-induced hepatic inflammation, fibrosis and carcinogenesis in rats. American Journal of Chinese Medicine 45: 173-198.
96. Tsai, M.Y., Y.C. Hung, Y.H. Chen, Y.H. Chen, Y.C. Huang, C.W. Kao, Y.L. Su. 2016. A preliminary randomised controlled study of short-term Antrodia cinnamomea treatment combined with chemotherapy for patients with advanced cancer. BMC Complementary and Alternative Medicine 16: 322
97. Tsukagoshi, S. 1984. Krestin (PSK). Cancer Treatment Reviews 11: 131-155.
98. Valverde, M.E., T.H. Pérez and O.P. López. 2015. Edible mushrooms: improving human health and promoting quality life. International Journal of Microbiology 2015: 1-14.
99. Viel, M., F. Collet and C. Lanos. 2018. Chemical and multi-physical characterization of agro-resources’ by-product as a possible raw building material. Industrial Crops and Products 120: 214-237.
100. Wang, D., C. Huang, Y. Zhao, L. Wang, Y. Yang, A. Wang, Y. Zhang, G.S. Hu and J.M. Jia. 2020. Comparative studies on polysaccharides, triterpenoids, and essential oil from fermented mycelia and cultivated sclerotium of a medicinal and edible mushroom, Poria Cocos. Molecules 25: 1269
101. Wang, J., C. Wang, S.Q. Li, W.W. Li, G.Q. Yuan, Y.X. Pan and H.X. Chen. 2017. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomedicine and Pharmacotherapy 95: 1669-1677.
102. Wang, Q., X. Qiao, Y. Qian, Z.W. Li, Y.M. Tzeng, D.M. Zhou, D.A. Guo and M. Ye. 2015. Intestinal absorption of ergostane and lanostane triterpenoids from Antrodia cinnamomea using Caco-2 cell monolayer model. Natural Product and Bioprospecting 5: 237-246.
103. Wang, Y.J., S.C. Lee, C.H. Hsu, Y.H. Kuo, C.C. Yang and F.J. Lin. 2019. Antcins, triterpenoids from Antrodia cinnamomea, as new agonists for peroxisome proliferator-activated receptor α. Journal of Food and Drug Analysis 27: 295-304.
104. Wen, C.L., C.C. Chang, S.S. Huang, C.L. Kuo, S.L. Hsu, J.S. Deng and G.J. Huang. 2011. Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. Journal of Ethnopharmacology 137: 575-584.
105. Wu, B., J.C. Cui, C.G. Zhang and Z.H. Li. 2012. A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells. International Journal of Biological Macromolecules 50: 1116-1120.
106. Wu, C.T., C.C. Hsieh, W.C. Lin, C.Y. Tang, C.H. Yang, Y.C. Huang and Y.J. Ko. 2013. Internal transcribed spacer sequence-based identification and phylogenic relationship of I-Tiao-Gung originating from Flemingia and Glycine (Leguminosae) in Taiwan. Journal of Food and Drug Analysis 21: 356-362.
107. Xu, H., S. Zou, X. Xu and L. Zhang. 2016. Anti-tumor effect of β-glucan from Lentinus edodes and the underlying mechanism. Scientific Reports 6: 28802.
108. Xu, X.J., P. Chen, L. Zhang and H. Ashida. 2012. Chain structures of glucans from Lentinus edodes and their effects on NO production from RAW 264.7 macrophages. Carbohydrate Polymers 87: 1855-1862.
109. Yamauchi, T. and T. Moroishi. 2019. Hippo pathway in mammalian adaptive immune system. Cells 8: 398.
110. Yan, J.K., Z.C. Ding, X. Gao, Y.Y. Wang, Y. Yang, D. Wu and H.N. Zhang. 2018. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions. Carbohydrate Polymers 193: 373-382.
111. Yanaki, T., W. Ito, K. Tabata, T. Kojima, T. Norisuye, N. Takano and H. Fujita. 1983. Correlation between the antitumor activity of a polysaccharide schizophyllan and its triple-helical conformation in dilute aqueous solution. Biophysical Chemistry 17: 337-342.
112. Yin, M., Y. Zhang and H. Li. 2019. Advances in research on immunoregulation of macrophages by plant polysaccharides. Frontier in Immunology 10: 145.
113. Yu, M.Y., X.Y. Xu, Y. Qing, X. Luo, Z.R. Yang and L.Y. Zheng. 2009. Isolation of an anti-tumor polysaccharide from Auricularia polytricha (jew’s ear) and its effects on macrophage activation. European Food Research and Technology 228: 477-485.
114. Zhang, L., Y. Hu, X.Y. Duan, T.T. Tang, Y.B. Shen, B. Hu, A.P. Liu, H. Chen, C. Li and Y.T. Liu. 2018a. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. International Journal of Biological Macromolecules 113: 1-7.
115. Zhang, M., S.W. Cui, P.C.K. Cheung and Q. Wang. 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science and Technology 18: 4-19.
116. Zhang, Y.T., Z. Wang, D.Y. Li, W.T. Zang, H. Zhu, P. Wu, Y.X. Mei and Y.X. Liang. 2018b. A polysaccharide from Antrodia cinnamomea mycelia exerts antitumor activity through blocking of TOP1/TDP1-mediated DNA repair pathway. International Journal of Biological Macromolecules 120: 1551-1560.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69016-
dc.description.abstract牛樟芝為一種高價值藥用真菌,其具有抗癌、抗氧化、降血糖、保肝、抗B型肝炎病毒、免疫調節及抗發炎等多種功效。自然界中除了常見的紅樟芝外,尚有甚少被研究的黃樟芝與白樟芝。本研究目的為確認不同表現型牛樟芝的基源,並分析其總三萜含量及組成分;另分析糙米培養之不同表現型牛樟芝的三萜類及多醣體含量,以及免疫調節活性。本研究共分析八種野外採集的不同表現型牛樟芝樣本。ITS區域定序結果確認這些不同表現型牛樟芝皆為牛樟芝物種,且已將其ITS序列登入NCBI的GenBank資料庫,其登入序號分別為MN947413、MN947415、 MN947416、MN947417、MN947418、MN947419、MK764936及MK764937。三萜類分析結果顯示,野外採集的紅樟芝、黃樟芝及白樟芝皆具有相同的三萜類組成分, 包括antcin A、antcin B、antcin C、antcin K、antcin G、antcin H 、dehydrosulfurenic acid、15-acetyldehydrosulfurenic acid及dehydroeburicoic acid,但紅樟芝的總三萜含量及其組成分的相對含量最高、黃樟芝次之、白樟芝最低。糙米培養之不同表現型牛樟芝中,紅樟芝與白樟芝的總三萜含量無明顯差異,且皆具有相似的三萜類組成分,唯有紅樟芝具有antcin C。多醣體物化性質分析結果表明,不同表現型牛樟芝多醣體皆具有相同的單醣組成,但兩者間葡萄糖、甘露糖、阿拉伯糖及岩藻糖含量卻有差異;此外,紅樟芝多醣體的分子量也較白樟芝小。雖然紅樟芝及白樟芝多醣體皆會抑制經LPS誘導之RAW264.7巨噬細胞的TNF-α及IL-6生成量,然而僅白樟芝多醣體能顯著抑制NO生成量。綜上所述,紅樟芝具有最高的總三萜含量;白樟芝多醣體的抗發炎活性較紅樟芝佳,說明多醣體物化性質差異會影響其抗發炎活性強弱。zh_TW
dc.description.abstractAntrodia cinnamomea (AC) is a high value medicinal mushroom with various bioactivities such as anticancer, antioxidative, hypoglycemia, hepatoprotection, anti-hepatitis B virus, immunomodulation and anti-inflammation. In nature, besides the commonly known red AC phenotypes, there are also yellow and white AC phenotypes that are not well studied. The aims of this study were to authenticate the phylogenetic identity of different AC phenotypes, and analyze their triterpenoid contents and compositions, followed by investigating the triterpenoids and polysaccharides contents and immunomodulatory activities of different brown rice cultured AC phenotypes. Eight different wildly collected AC phenotypes were subjected to phylogenetic analysis to confirm their authenticity. Based on ITS sequence results, the eight different AC phenotypes were confirmed to be species AC, and their DNA sequence have been registered in NCBI GenBank with the following accession numbers: MN947413, MN947415, MN947416, MN947417, MN947418, MN947419, MK764936 and MK764937. Among the different AC phenotypes, results showed that red AC had the highest triterpenoid contents, followed by yellow AC and white AC. HPLC profiles indicated that different AC phenotypes had similar triterpenoid compounds, including antcin A, antcin B, antcin C, antcin K, antcin G, antcin H, dehydrosulfurenic acid, 15-acetyldehydrosulfurenic acid and dehydroeburicoic acid. For different AC phenotypes cultured on brown rice, results showed that red AC and white AC had similar triterpenoid contents, but their triterpenoid profiles were slightly different. Only antcin C was found in red AC. The polysaccharides of both red AC and white AC cultured on brown rice possessed similar monosaccharide compositions; however, the glucose, mannose, fucose, and arabinose contents between them are different. In addition, the molecular weight of red AC polysaccharides was much lower than white AC. The polysaccharides from red AC and white AC significantly inhibited the TNF-α and IL-6 production in LPS-induced RAW264.7 macrophage cells; however, only white AC polysaccharides was found to significantly inhibit NO production. In conclusion, the results indicate that among different AC phenotypes, red AC had the highest triterpenoid contents, and the differences in the physicochemical properties of white AC polysaccharides may lead to its better anti-inflammatory potency than red AC.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:47:18Z (GMT). No. of bitstreams: 1
U0001-1708202000353300.pdf: 3044472 bytes, checksum: 6684251980c70def3ff7dca8542b86e0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌........................................................................ .I
摘要.........................................................................II
Abstract....................................................................III
縮寫對照表.................................................................. .V
第一章、前言...................................................................1
第二章、文獻回顧...............................................................3
2.1. 免疫系統.................................................................3
2.1.1. 巨噬細胞及其功能........................................................5
2.1.2. 巨噬細胞及脂多醣........................................................5
2.2. 發炎反應.................................................................7
2.2.1. 一氧化氮...............................................................7
2.2.2. 細胞激素...............................................................9
2.2.2.1. TNF-α................................................................9
2.2.2.2. IL-6.................................................................9
2.3. 食藥用菇類簡介............................................................11
2.3.1. 菇類三萜類簡介..........................................................13
2.3.2. 菇類三萜類生物活性..................................................... 14
2.3.3. 菇類多醣體簡介.........................................................15
2.3.3.1. 菇類多醣體的物化性質..................................................16
2.3.3.2. 菇類多醣體的免疫受體及其免疫調節活性....................................18
2.4. 牛樟芝簡介...............................................................22
2.4.1. 牛樟芝的三萜類化合物....................................................23
2.4.1.1. 牛樟芝三萜類之免疫調節活性.............................................25
2.4.2. 牛樟芝多醣體............................................................27
2.4.2.1. 牛樟芝多醣體的物化性質.................................................27
2.4.2.2. 牛樟芝多醣體的免疫調節活性.............................................27
2.5. 真菌基源鑒定..............................................................28
第三章、研究架構...............................................................29
第四章、材料與方法.............................................................30
4.1. 材料.....................................................................30
4.2. 化學試劑.................................................................31
4.3. 牛樟芝子實體ITS序列分析...................................................32
4.4. 牛樟芝子實體三萜類分析....................................................35
4.4.1. 總三萜含量測定.........................................................35
4.4.2. 三萜類組成分分析.......................................................36
4.5. 牛樟芝子實體的多醣體分離及純化.............................................37
4.5.1. 總醣含量測定...........................................................38
4.5.2. 蛋白質含量測定.........................................................39
4.5.3. 分子量測定.............................................................39
4.5.4. 單醣組成分析...........................................................40
4.6. 細胞培養.................................................................42
4.6.1. 細胞培養條件...........................................................42
4.6.2. 細胞活化...............................................................42
4.6.3. 細胞繼代...............................................................42
4.6.4. 細胞冷凍...............................................................43
4.7. 細胞存活率分析...........................................................44
4.8. NO生成量測定.............................................................45
4.9. TNF-α及IL-6生成量測定.....................................................47
4.10. 統計分析................................................................48
第五章、結果與討論.............................................................49
5.1. 不同表現型牛樟芝的基源.....................................................49
5.2. 不同表現型牛樟芝的三萜類含量及組成分........................................54
5.3. 糙米培養之不同表現型牛樟芝的三萜類含量及組成分...............................59
5.4. 糙米培養之不同表現型牛樟芝多醣體物化性質....................................62
5.5.1. 產率、總醣及蛋白質含量..................................................62
5.5.2. 分子量.................................................................65
5.5.3. 單醣組成...............................................................68
5.5. 糙米培養之不同表現型牛樟芝多醣體對RAW264.7細胞存活率的影響...................70
5.6. 抗發炎活性................................................................72
5.6.1. 糙米培養牛樟芝多醣體對NO生成量的影響......................................72
5.6.2. 糙米培養牛樟芝多醣體對TNF-α及IL-6生成量的影響.............................74
第六章、綜合討論...............................................................78
第七章、結論...................................................................81
第八章、參考文獻...............................................................82
第九章、附錄...................................................................97
dc.language.isozh-TW
dc.subject多醣體zh_TW
dc.subject免疫調節zh_TW
dc.subject三萜類zh_TW
dc.subject表現型zh_TW
dc.subject牛樟芝zh_TW
dc.subjectpolysaccharidesen
dc.subjectAntrodia cinnamomeaen
dc.subjectphenotypesen
dc.subjecttriterpenoidsen
dc.subjectimmunomodulationen
dc.title不同表現型牛樟芝的化學成分及免疫調節活性研究zh_TW
dc.titleStudy on the chemical constituents and immunomodulatory activities of different Antrodia cinnamomea phenotypesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅凱尹(Kai-Yin Loh),盧美光(Mei-Kuang Lu),賴敏男(Min-Nan Lai)
dc.subject.keyword牛樟芝,表現型,三萜類,多醣體,免疫調節,zh_TW
dc.subject.keywordAntrodia cinnamomea,phenotypes,triterpenoids,polysaccharides,immunomodulation,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202003645
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-1708202000353300.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved