Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊申語
dc.contributor.authorTing-Yu Chengen
dc.contributor.author鄭廷裕zh_TW
dc.date.accessioned2021-06-17T02:46:50Z-
dc.date.available2019-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation[1] A. Mastmeyer, D. Fortmeier, and H. Handels, “Efficient patient modeling for visuo-haptic VR simulation using a generic patient atlas,” Comput. Methods Programs Biomed., vol. 132, pp. 161–175, 2016.
[2] J.-H. T. Lin, “Fear in virtual reality (VR): Fear elements, coping reactions, immediate and next-day fright responses toward a survival horror zombie virtual reality game,” Comput. Hum. Behav., vol. 72, pp. 350–361, 2017.
[3] “折射式微透鏡陣列介紹.” [Online]. Available: http://www.itrc.narl.org.tw/Publication/Newsletter/no81/p12.php. [Accessed: 15-Mar-2017].
[4] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera - Semantic Scholar.” [Online]. Available: /paper/Light-Field-Photography-with-a-Hand-held-Plenoptic-Ng-Levoy/0c5023cd0a5472e032215cb34555a3b5bdbdaed7. [Accessed: 12-Jun-2017].
[5] A. Schilling, W. R. Tompkin, R. Staub, R. D. Hersch, S. Chosson, and I. Amidror, “Diffractive moire features for optically variable devices,” 2006, pp. 60750-1-60750–12.
[6] L. R. Brown 1963, “Coding apparatus,” US3084453 A.
[7] M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moire magnifier,” Pure Appl. Opt. J. Eur. Opt. Soc. Part A, vol. 3, no. 2, pp. 133–142, 1994.
[8] W. Michaeli, S. Heßner, F. Klaiber, and J. Forster, “Geometrical Accuracy and Optical Performance of Injection Moulded and Injection-compression Moulded Plastic Parts,” CIRP Ann. - Manuf. Technol., vol. 56, no. 1, pp. 545–548, 2007.
[9] Y. Song, Q. Hao, J. Cao, F. Fan, T. Liu, and L. Li, “Modeling and simulation of the retina-like image sensor based on space-variant lens array,” Appl. Opt., vol. 52, no. 12, pp. 2584–2594, Apr. 2013.
[10] C.-H. Tien, C.-H. Hung, and T.-H. Yu, “Microlens Arrays by Direct-Writing Inkjet Print for LCD Backlighting Applications,” J. Disp. Technol., vol. 5, no. 5, pp. 147–151, May 2009.
[11] “Integrated Lens Array | Products | Isuzu Glass Ltd.” [Online]. Available: http://www.isuzuglass.com/products/lens-integrated.html. [Accessed: 07-Aug-2017].
[12] R. Kumar and A. K. Aggarwal, “Interferometric moiré pattern encoded security holograms with concealed phase object,” Opt. Commun., vol. 279, no. 1, pp. 120–123, Nov. 2007.
[13] “Pelican Imaging Array Camera: Light Field Module for Smartphones | LightField Forum.” [Online]. Available: http://lightfield-forum.com/light-field-camera-prototypes/pelican-imaging-array-camera-light-field-module-for-smartphones/. [Accessed: 18-Jan-2017].
[14] D. Lanman and D. Luebke, “Near-eye Light Field Displays,” ACM Trans Graph, vol. 32, no. 6, pp. 220–1–220–10, 2013.
[15] D. S. Kim, H. S. Lee, B.-K. Lee, S. S. Yang, T. H. Kwon, and S. S. Lee, “Replications and analysis of microlens array fabricated by a modified LIGA process,” Polym. Eng. Sci., vol. 46, no. 4, pp. 416–425, Apr. 2006.
[16] H.-T. Hsieh, V. Lin, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun., vol. 284, no. 21, pp. 5225–5230, Spring 2011.
[17] J. Y. Kim, K. Pfeiffer, A. Voigt, G. Gruetzner, and J. Brugger, “Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique,” J. Mater. Chem., vol. 22, no. 7, pp. 3053–3058, Jan. 2012.
[18] H.-D. Kim, G.-W. Yoon, J. Yeon, J.-H. Lee, and J.-B. Yoon, “Fabrication of a uniform microlens array over a large area using self-aligned diffuser lithography (SADL),” J. Micromechanics Microengineering, vol. 22, no. 4, pp. 045002–045009, 2012.
[19] M. Brian and T. S. Tkaczyk, “Rapid fabrication of miniature lens arrays by four-axis single point diamond machining., Rapid fabrication of miniature lens arrays by four-axis single point diamond machining,” Opt. Express, vol. 21, 21, no. 3, 3, pp. 3557, 3557–3572, Feb. 2013.
[20] C.-Y. Chang, S.-Y. Yang, L.-S. Huang, and T.-M. Jeng, “A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold,” J. Micromechanics Microengineering, vol. 16, no. 5, pp. 999–1005, 2006.
[21] T.-C. Huang, B.-D. Chan, J.-K. Ciou, and S.-Y. Yang, “Fabrication of microlens arrays using a CO 2 -assisted embossing technique,” J. Micromechanics Microengineering, vol. 19, no. 1, pp. 015018–0515024, 2009.
[22] B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol., vol. 10, no. 6–7, pp. 531–535, Oct. 2004.
[23] S. Y. Yang and M. Z. Ke, “Experimental study on the effects of adding compression to injection molding process,” Adv. Polym. Technol., vol. 14, no. 1, pp. 15–24, Spring 1995.
[24] C. Weng, W. B. Lee, and S. To, “Birefringence techniques for the characterization of residual stresses in injection-moulded micro-lens arrays,” Polym. Test., vol. 28, no. 7, pp. 709–714, Oct. 2009.
[25] “Esta Tech | Plastic Injection Molding Machines.” [Online]. Available: http://www.esta-tech.com/products/44-yc/year-chance-machinery. [Accessed: 16-Mar-2017].
[26] G. Tosello, “Chapter 9 - Micro-injection Molding,” in Micromanufacturing Engineering and Technology (Second Edition), Y. Qin, Ed. Boston: William Andrew Publishing, 2015, pp. 201–238.
[27] R. Surace, G. Trotta, V. Bellantone, and I. Fassi, “The Micro Injection Moulding Process for Polymeric Components Manufacturing,” InTech, 2012.
[28] G. Lucchetta, M. Sorgato, S. Carmignato, and E. Savio, “Investigating the technological limits of micro-injection molding in replicating high aspect ratio micro-structured surfaces,” CIRP Ann. - Manuf. Technol., vol. 63, no. 1, pp. 521–524, 2014.
[29] J.-H. Chang and S.-Y. Yang, “Gas pressurized hot embossing for transcription of micro-features,” ResearchGate, vol. 10, no. 1, pp. 76–80, Dec. 2003.
[30] D. Jucius, I. Grybas, V. Grigaliūnas, M. Mikolajūnas, and A. Lazauskas, “UV imprint fabrication of polymeric scales for optical rotary encoders,” Opt. Laser Technol., vol. 56, pp. 107–113, 2014.
[31] Y.-E. Yoo, T.-H. Kim, T.-J. Je, D.-S. Choi, C.-W. Kim, and S.-K. Kim, “Injection molding of micro patterned PMMA plate,” Trans. Nonferrous Met. Soc. China, vol. 21, Supplement 1, pp. s148–s152, 2011.
[32] A.-K. Holthusen, O. Riemer, J. Schmütz, and A. Meier, “Mold machining and injection molding of diffractive microstructures,” J. Manuf. Process., vol. 26, pp. 290–294, 2017.
[33] C.-H. Wu, W.-S. Hsu, K.-W. Fan, Y.-L. Lin, and Y.-C. Lin, “Optimization of an optical disk manufacturing process for polymer microfluidic substrates by using the design of experiment methodology,” J. MicroNanolithography MEMS MOEMS, vol. 9, no. 3, pp. 031011-031011-9, 2010.
[34] C.-S. Chen, S.-C. Chen, W.-H. Liao, R.-D. Chien, and S.-H. Lin, “Micro injection molding of a micro-fluidic platform,” ResearchGate, vol. 37, no. 9, pp. 1290–1294, Nov. 2010.
[35] K. J. Cha, J. Lim, M.-H. Na, and D. S. Kim, “Physically microstriped-nanoengineered polystyrene surface (PMS-NPS) for regulating cell attachment and alignment fabricated by nano-injection molding,” Microelectron. Eng., vol. 158, pp. 11–15, Spring 2016.
[36] M. Sortino, G. Totis, and E. Kuljanic, “Comparison of Injection Molding Technologies for the Production of Micro-optical Devices,” Procedia Eng., vol. 69, pp. 1296–1305, 2014.
[37] S. Hong, I. Min, K. Yoon, and J. Kang, “Effects of adding injection–compression to rapid heat cycle molding on the structure of a light guide plate,” J. Micromechanics Microengineering, vol. 24, no. 1, pp. 015009–015024, 2014.
[38] C. Rytka, P. M. Kristiansen, and A. Neyer, “Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications,” J. Micromechanics Microengineering, vol. 25, no. 6, pp. 065008–065024, 2015.
[39] C. Hopmann, A. Reßmann, and J. Heinisch, “Influence on Product Quality by pvT-Optimised Processing in Injection Compression Molding,” Int. Polym. Process., vol. 31, no. 2, pp. 156–165, 28 2016.
[40] W.-B. Young, “Effect of process parameters on injection compression molding of pickup lens,” Appl. Math. Model., vol. 29, no. 10, pp. 955–971, 2005.
[41] S. Kang, J. S. Kim, and H. Kim, “Birefringence distribution in magneto-optical disk substrate fabricated by injection compression molding,” Opt. Eng., vol. 39, no. 3, pp. 689–694, 2000.
[42] C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express, vol. 16, no. 24, pp. 19978–19986, Nov. 2008.
[43] S. C. Chen, Y. C. Chen, and H. S. Peng, “Simulation of injection–compression-molding process. II. Influence of process characteristics on part shrinkage,” J. Appl. Polym. Sci., vol. 75, no. 13, pp. 1640–1654, 28 2000.
[44] Q. Chuan-zhen, W. Yong-tao, Z. Jian, and Z. Ya-jun, “The Study of Injection Compression Molding of Thin-wall Light-guide Plates with Hemispherical Micro structures,” presented at the Proceedings of the 1st International Conference on Mechanical Engineering and Material Science, 2012.
[45] W.-H. Yang, A. Peng, L. Liu, D. C. Hsu, and R.-Y. Chang, “Integrated numerical simulation of injection molding using true 3D approach,” Annu. Tech. Conf. - ANTEC Conf. Proc., vol. Volume 1, 2004.
[46] W.-B. Young, “Filling and Postfilling Analysis of Injection/Compression Molding,” Int. Polym. Process., vol. 15, no. 4, pp. 416–422, Spring 2000.
[47] W.-S. Guan and H.-X. Huang, “Back melt flow in injection–compression molding: Effect on part thickness distribution,” Int. Commun. Heat Mass Transf., vol. 39, no. 6, pp. 792–797, 2012.
[48] B. Fan, D. O. Kazmer, R. P. Theriault, and A. J. Poslinski, “Simulation of injection-compression molding for optical media,” Polym. Eng. Sci., vol. 43, no. 3, pp. 596–606, Spring 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69008-
dc.description.abstract雙面微透鏡是光場相機、微投影機、近眼顯示器的關鍵光學元件。本研究提出以微射出壓縮成型微透鏡陣列於基盤之製程,達到快速、均勻性佳和光學性質良好的雙面微透鏡陣列,本研究分為模擬分析與實際驗證兩大部分。
本研究首先以Moldex3D模流分析軟體,比較傳統一模多穴與基盤設計,發現基盤設計省料省時,且可在4吋面積上佈滿雙面微透鏡陣列,大幅提升生產效率。接著進行基盤雙面微透鏡陣列告操作參數敏感性實驗,探討射出成型(IM)與射出壓縮(ICM)不同參數的影響程度,各找出四個最敏感因子,使用田口法實驗設計的L9直交表,找出最佳成型參數組合後,進一步將模擬結果進行實際驗證。
實際成型驗證實驗中,使用高精密三軸加工中心機,製作各4×4凹、凸透鏡於兩個模仁上,將模仁安裝於可射出成型(IM)與射出壓縮成型(ICM)模具,為驗證4吋基盤上成型性,以近澆口與遠澆口各一雙面微透鏡陣列為代表,證實ICM比IM可得較佳轉寫均勻度與低殘留應力,驗證敏感因子與模擬結果相似,成型微透鏡陣列具備聚焦功能且成像清晰。
本研究使用模擬分析輔助設計,並以實際成型驗證,成功製作雙面微透鏡陣列於4吋基盤,且證實ICM比IM有更好轉寫率、光學性能與低殘留應力。本研究提升雙面微透鏡陣列成型技術與效率,滿足現今光學產業透鏡高性能且微小輕薄的需求。
zh_TW
dc.description.abstractThe double-sided microlens array is a key optical component of the light field camera, the micro projector and the near eye display etc. To enhance the productivity, this study developed a design of wafer-level double-sided microlens array.
In this study, Moldex3D simulation analysis software was used to simulate the design between traditional multi-cavity and disc mold. The result shows that the disc mold can save plastic and molding time. The 4-inch disc with double-sided microlens array can greatly enhance the production efficiency. The four most sensitive processing parameters of injection molding (IM) and injection compression molding (ICM) for microlens disc were discovered. Then L9 orthogonal method of Taguchi method was employed to find the best combination of molding parameters.
For molding experiments, 2 mold inserts with 4×4 convex and concave lens array were machined by the high-precision three-axis machining center. They were mounted into molds in one of two locations: one close to gate and the other away from gate. The mold was designed to be used in both IM and ICM. The molding experiments confirmed that the ICM is better than the IM with higher precision and lower residual stress. The results of experiments confirmed the results of simulation. The ICM molded microlens array has focal length 2.549 mm and spot size 50μm.
 
This study compared the simulation analysis and molding experiment in IM and ICM. ICM process successfully produced the double-sided microlens array on the 4-inch disc with high precision, low residual stress and good optical quality. This study proves the feasibility of fabricating wafer-level double-sided microlens array using injection compression molding.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:46:50Z (GMT). No. of bitstreams: 1
ntu-106-R04522725-1.pdf: 8716071 bytes, checksum: ddbaee301e990b60e3d155d4c96d24dd (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 1
摘要 2
Abstract 3
目錄 5
圖目錄 9
表目錄 15
第 一 章 導論 18
1.1 前言 18
1.2 微透鏡陣列介紹與應用 18
1.3 微透鏡陣列成型技術 23
1.4 射出壓縮成型技術 26
1.5 研究動機與目標 28
1.6 論文架構 30
第 二 章 文獻回顧 31
2.1 精密複製成型技術 31
2.1.1 微射出成型 31
2.1.2 微熱壓成型技術 32
2.1.3 UV固化成型技術 32
2.2 微射出成型應用與比較 36
2.2.1 微光學元件成型 36
2.2.2 生物技術應用 37
2.2.3 各新型成型方法比較 38
2.3 射出壓縮成型技術 41
2.4 射出壓縮模擬分析 45
2.5 文獻整體回顧 49
第 三 章 實驗設置與方法 50
3.1 實驗材料與設備 50
3.1.1 射出成型設備 50
3.1.2 實驗材料 52
3.2 成品與模具之設計和加工 55
3.2.1 成品設計 55
3.2.2 模具設計 57
3.2.3 模仁加工 59
3.3 量測設備 62
3.3.1 光學顯微鏡 62
3.3.2 表面輪廓儀 63
3.3.3 應力偏光儀 64
3.4 實驗方法 65
3.4.1 田口方法 65
3.4.2 變異數分析 67
3.4.3 實驗規劃流程 69
第 四 章 成型方法與參數優化之模擬分析 70
4.1 成品澆口型式之設計 70
4.1.1 扇形與直接澆口流道系統設計比較 70
4.1.2 模擬分析結果比較 72
4.2 微透鏡陣列成型參數選擇與水準因子表建立 73
4.2.1 單因子實驗模擬分析 74
4.2.2 射出成型敏感因子 78
4.2.3 射出壓縮成型敏感因子 79
4.2.4 水準因子表建立 81
4.3 微透鏡陣列成型田口法優化與變異數分析 83
4.3.1 模擬分析之實驗數據探討 83
4.3.2 最佳化成型參數組合 89
4.3.3 S/N比變異數分析 97
4.4 透鏡輪廓複製成型性和收縮率差異 102
4.4.1 流動方向成型差異性 102
4.4.2 一般射出成型和射出壓縮成型收縮差異 103
4.4.3 複製成型之透鏡輪廓分析 105
4.5 微透鏡陣列光學性質模擬分析 110
4.6 模擬分析之結果與討論 111
第 五 章 微透鏡陣列實際成型與量測驗證 112
5.1 實際成型實驗 112
5.1.1 模具溫度量測 112
5.1.2 模具壓縮間距設定 112
5.1.3 成型視窗實驗 115
5.1.4 短射試驗 122
5.2 驗證最佳化成型參數 126
5.2.1 微透鏡陣列模仁尺寸量測 126
5.2.2 最佳化成型參數之透鏡尺寸量測 131
5.2.3 成型之透鏡輪廓探討 134
5.2.4 透鏡中心偏差量測 139
5.3 光學性質檢測 141
5.3.1 光彈應力分析 141
5.3.2 各製程參數對光彈現象影響 142
5.3.3 聚焦性質檢測 147
5.3.4 透鏡實際成像測試 150
5.4 實際成型之結果與討論 152
第 六 章 結論與未來展望 153
6.1 研究成果總結 153
6.1.1 模擬分析總結 153
6.1.2 實際成型總結 154
6.2 未來展望 156
參考文獻 157
附錄 A 射出機規格 163
附錄 B OKP4塑料性質表 165
附錄 C 奇美PC-175塑料性質表 166
附錄 D 模具組合圖 167
附錄 E Nanotech 650FG性能表 168
dc.language.isozh-TW
dc.subject微透鏡陣列zh_TW
dc.subject雙面zh_TW
dc.subject田口方法zh_TW
dc.subject射出壓縮成型zh_TW
dc.subject可替換模仁zh_TW
dc.subjectDouble-sideden
dc.subjectMicrolens arrayen
dc.subjectInjection compression moldingen
dc.subjectTaguchi methoden
dc.subjectReplaceable mold insertsen
dc.title微射出壓縮成型微透鏡陣列於基盤之製程開發zh_TW
dc.titleFabrication of Microlens Array on Disk Using
Micro-Injection Compression Molding Process
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee粘世智,張致遠,韓麗龍,王智偉
dc.subject.keyword微透鏡陣列,射出壓縮成型,田口方法,可替換模仁,雙面,zh_TW
dc.subject.keywordMicrolens array,Injection compression molding,Taguchi method,Replaceable mold inserts,Double-sided,en
dc.relation.page168
dc.identifier.doi10.6342/NTU201703376
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
8.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved