請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69003完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥甫 | |
| dc.contributor.author | Wen-Chieh Chou | en |
| dc.contributor.author | 周彣潔 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:46:34Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5-16.
Bazinet, A. L., Zwickl, D. J., & Cummings, M. P. (2014). A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Systematic biology, 63(5), 812-818. Dalayap, R. M., Torres, M. A. J., & Demayo, C. G. (2011). Landmark and outline methods in describing petal, sepal and labellum shapes of the flower of Mokara orchid varieties. Int. J. Agric. Biol, 13, 652-658. Gardner, A. G., Gerald, J. N. F., Menz, J., Shepherd, K. A., Howarth, D. G., & Jabaily, R. S. (2016). Characterizing floral symmetry in the Core Goodeniaceae with geometric morphometrics. PloS one, 11(5), e0154736. Gómez, J. M., Perfectti, F., & Klingenberg, C. P. (2014). The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade. Phil. Trans. R. Soc. B, 369(1649), 20130257. Gómez, J. M., Perfectti, F., & Lorite, J. (2015). The role of pollinators in floral diversification in a clade of generalist flowers. Evolution, 69(4), 863-878. Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33-51. Kaczorowski, R. L., Seliger, A. R., Gaskett, A. C., Wigsten, S. K., & Raguso, R. A. (2012). Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Functional Ecology, 26(3), 577-587. Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic acids research, 30(14), 3059-3066. Klingenberg, C. P., & Ekau, W. (1996). A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biological Journal of the Linnean Society, 59(2), 143-177. McArdle, B., & Rodrigo, A. G. (1994). Estimating the ancestral states of a continuous-valued character using squared-change parsimony: an analytical solution. Systematic Biology, 43(4), 573-578. McElrone, A. J., Choat, B., Parkinson, D. Y., MacDowell, A. A., & Brodersen, C. R. (2013). Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature. Journal of visualized experiments: JoVE, (74). Miller, J. S., & Venable, D. L. (2003). Floral morphometrics and the evolution of sexual dimorphism in Lycium (Solanaceae). Evolution, 57(1), 74-86. Pajor, R., Fleming, A., Osborne, C. P., Rolfe, S. A., Sturrock, C. J., & Mooney, S. J. (2013). Seeing space: visualization and quantification of plant leaf structure using X-ray micro-computed tomography: view point. Journal of experimental botany, 64(2), 385-390. Pérez, R., Vargas, P., & Arroyo, J. (2004). Convergent evolution of flower polymorphism in Narcissus (Amaryllidaceae). New Phytologist, 161(1), 235-252. Perret, M., Chautems, A., Spichiger, R., Kite, G., & Savolainen, V. (2003). Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS. American Journal of Botany, 90(3), 445-460. Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England), 14(9), 817-818. Savriama, Y., Gómez, J. M., Perfectti, F., & Klingenberg, C. P. (2012). Geometric morphometrics of corolla shape: dissecting components of symmetric and asymmetric variation in Erysimum mediohispanicum (Brassicaceae). New Phytologist, 196(3), 945-954. Sidlauskas, B. (2008). Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution, 62(12), 3135-3156. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739. van der Niet, T., Zollikofer, C. P., de León, M. S. P., Johnson, S. D., & Linder, H. P. (2010). Three-dimensional geometric morphometrics for studying floral shape variation. Trends in plant science, 15(8), 423-426. Wang, C. N., Hsu, H. C., Wang, C. C., Lee, T. K., & Kuo, Y. F. (2015). Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers. Frontiers in plant science, 6. Wiley, D. F., Amenta, N., Alcantara, D. A., Ghosh, D., Kil, Y. J., Delson, E., ... & Hamann, B. (2005, October). Evolutionary morphing. In Visualization, 2005. VIS 05. IEEE (pp. 431-438). IEEE. Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2004). Geometric morphometrics for biologists: a primer. Academic Press. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69003 | - |
| dc.description.abstract | 花朵形狀變異對於花卉產業來說是一個有趣的研究主題。岩桐屬Corytholoma擁有高度多樣的花朵形狀。量化花朵形狀變異是園藝學家和植物學家分析花卉形狀的重要環節。此外,在演化樹中花朵形狀推估的演變也是個引人注目的議題。揭露共祖花朵形狀可以幫助我們去探究現存物種的多樣性與花朵形狀變異之間的關係。在此研究中,利用三維影像與幾何形態學去量化花朵形狀變異。藉由微計算機斷層掃描技術得到三維花朵影像。特徵點在三維影像上半自動點選,以描述花朵形狀。利用幾何形態學來決定主要的花朵形狀變異。再藉由主要的花朵形狀變異來定義形態上的特徵。透過權重平方簡約法與現存花朵形狀重建共祖花朵形狀。以呈現Corytholoma花朵形狀的演化。最後,此研究提出一個方法在三維中量化岩桐屬花朵形狀變異與重建共祖花朵形狀。 | zh_TW |
| dc.description.abstract | Floral shape variation is an intriguing research topic for floricultural industry. Floral shape is highly diverse in clade Corytholoma of genus Sinningia. Quantifying floral shape variations is an important segment for horticulturists and botanists to analyze the floral shapes. Additionally, putative transition of floral shape in phylogenetic tree is an attractive issue. Revealing the flower shapes of the putative ancestors may help us to explore the relationship between diversification of extant species and floral shape variation. In the study, the floral shape variations were quantified using the acquired 3D imaging, and geometric morphometrics. The three-dimensional (3D) images of flower specimens were obtained using micro-computed tomography. Landmarks, characteristic points of the flowers, were identified semi-automatically on the 3D images to describe the flower shapes. Major shape variations of the flowers were determined using geometric morphometrics. Morphological traits of the flowers were defined according to the major shape variations. Ancestral floral shapes were reconstructed using weighted squared-change parsimony and the extant floral shapes. Evolution of the floral shapes in clade Corytholoma was revealed. In conclusion, this study showed a method to quantify the floral shape variations and reconstruct ancestral floral shapes in 3D for genus Sinningia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:46:34Z (GMT). No. of bitstreams: 1 ntu-106-R04631006-1.pdf: 1695124 bytes, checksum: 647e3a9d1da20806e083bed0db2ab0a7 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii CHAPTER 1. INTRODUCTION 2 1.1 Background 2 1.2 Objectives 3 1.3 Organization 3 CHAPTER 2. LITERATURE REVIEW 4 2.1 Traditional shape quantification 4 2.2 Three-dimensional geometric morphometrics for shape quantification 4 2.3 Ancestral states reconstruction 4 CHAPTER 3. MATERIALS AND METHODS 6 3.1 Flower materials 6 3.2 Three-dimensional image acquisition 7 3.3 Landmark identification 7 3.4 Major shape variations 8 3.5 Morphological traits 9 3.6 Phylogenetic tree construction 11 3.7 Ancestor floral shape reconstruction and phylomorphospace revelation 11 3.8 Color parameter quantification 12 CHAPTER 4. RESULTS 14 4.1 Major shape variations 14 4.2 Morphological traits 17 4.3 Floral shapes at ancestral states 19 4.4 Color parameter quantification 23 CHAPTER 5. CONCLUSION 24 REFERENCES 25 APPENDIX 1 29 APPENDIX 2 30 | |
| dc.language.iso | en | |
| dc.subject | 岩桐屬 | zh_TW |
| dc.subject | 幾何形態學 | zh_TW |
| dc.subject | 普式分析 | zh_TW |
| dc.subject | 花朵形狀變異 | zh_TW |
| dc.subject | 共祖花朵形狀 | zh_TW |
| dc.subject | floral shape variations | en |
| dc.subject | genus Sinningia | en |
| dc.subject | ancestral floral shapes | en |
| dc.subject | Geometric morphometrics (GM) | en |
| dc.subject | generalized Procrustes analysis (GPA) | en |
| dc.title | 岩桐屬三維花朵形狀變異分析以及共祖形狀之重建 | zh_TW |
| dc.title | 3D floral shape variation and ancestral floral shape reconstruction for genus Sinningia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾國芳,陳仁治 | |
| dc.subject.keyword | 幾何形態學,普式分析,花朵形狀變異,共祖花朵形狀,岩桐屬, | zh_TW |
| dc.subject.keyword | Geometric morphometrics (GM),generalized Procrustes analysis (GPA),floral shape variations,ancestral floral shapes,genus Sinningia, | en |
| dc.relation.page | 30 | |
| dc.identifier.doi | 10.6342/NTU201703428 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
